-
Notifications
You must be signed in to change notification settings - Fork 6.5k
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Describe the bug
After torch.compile wan2.1 vae consume more GPU memory than no compilation, which is unexpected in my opinion.
Reproduction
import sys
import torch
from diffusers import AutoencoderKLWan
def compile_wan_vae(compile):
model_id = 'Wan-AI/Wan2.1-T2V-14B-Diffusers'
dtype = torch.float32
device = 'cuda'
torch.cuda.memory._record_memory_history()
vae = AutoencoderKLWan.from_pretrained(
model_id, subfolder="vae", torch_dtype=dtype
).to(device)
if compile:
vae.decoder = torch.compile(vae.decoder)
shape = (1, 16, 13, 120, 120)
with torch.no_grad():
latents = torch.randn(shape, device=device, dtype=dtype)
video = vae.decode(latents, return_dict=False)[0]
torch.cuda.empty_cache()
with torch.no_grad():
for _ in range(3):
latents = torch.randn(shape, device=device, dtype=dtype)
video = vae.decode(latents, return_dict=False)[0]
torch.cuda.memory._dump_snapshot(f"{compile}-compile.pickle")
if __name__ == '__main__':
compile_wan_vae(sys.argv[1] == 'compile')Logs
System Info
- π€ Diffusers version: 0.34.0
- Platform: Linux-5.10.134-16.1.3.vip.an8.x86_64-x86_64-with-glibc2.39
- Running on Google Colab?: No
- Python version: 3.12.3
- PyTorch version (GPU?): 2.7.1+cu126 (True)
- Flax version (CPU?/GPU?/TPU?): not installed (NA)
- Jax version: not installed
- JaxLib version: not installed
- Huggingface_hub version: 0.34.2
- Transformers version: 4.54.0
- Accelerate version: 1.9.0
- PEFT version: 0.16.0
- Bitsandbytes version: not installed
- Safetensors version: 0.5.3
- xFormers version: not installed
- Accelerator: NVIDIA L20, 46068 MiB
NVIDIA L20, 46068 MiB
NVIDIA L20, 46068 MiB
NVIDIA L20, 46068 MiB
NVIDIA L20, 46068 MiB
NVIDIA L20, 46068 MiB
NVIDIA L20, 46068 MiB
NVIDIA L20, 46068 MiB - Using GPU in script?:
- Using distributed or parallel set-up in script?:
Who can help?
No response
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working

