Skip to content

how to quantization wan 2.2 vace after loading lora? #12720

@chaowenguo

Description

@chaowenguo
diffusers.WanVACEPipeline.from_pretrained('linoyts/Wan2.2-VACE-Fun-14B-diffusers', vae=diffusers.AutoencoderKLWan.from_pretrained('linoyts/Wan2.2-VACE-Fun-14B-diffusers', subfolder='vae', torch_dtype=torch.float32), torch_dtype=torch.bfloat16, quantization_config=diffusers.PipelineQuantizationConfig(quant_backend='bitsandbytes_8bit', quant_kwargs={'load_in_8bit':True}, components_to_quantize=['transformer', 'transformer_2'])).save_pretrained('wan')

normally I can save the quantization model in this way
But now I want to merge lora and the quantization and then save the model with lora. How?

wan = diffusers.WanVACEPipeline.from_pretrained('linoyts/Wan2.2-VACE-Fun-14B-diffusers', vae=diffusers.AutoencoderKLWan.from_pretrained('linoyts/Wan2.2-VACE-Fun-14B-diffusers', subfolder='vae', torch_dtype=torch.float32), torch_dtype=torch.bfloat16)
wan.load_lora_weights('lightx2v/Wan2.2-Lightning', weight_name='Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1/high_noise_model.safetensors', adapter_name='lightning')
wan.load_lora_weights('lightx2v/Wan2.2-Lightning', weight_name='Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1/low_noise_model.safetensors', adapter_name='lightning_2', load_into_transformer_2=True)
wan.set_adapters(['lightning', 'lightning_2'], adapter_weights=[1] * 2)

how to quantization and save_pretrained?

@yiyixuxu @DN6

Metadata

Metadata

Assignees

No one assigned

    Labels

    staleIssues that haven't received updates

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions