diff --git a/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py b/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py index 542b8505874f..923683ae7c38 100644 --- a/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py +++ b/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py @@ -160,7 +160,7 @@ def save_model_card( from diffusers import AutoPipelineForText2Image import torch {diffusers_imports_pivotal} -pipeline = AutoPipelineForText2Image.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda') +pipeline = AutoPipelineForText2Image.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('{repo_id}', weight_name='pytorch_lora_weights.safetensors') {diffusers_example_pivotal} image = pipeline('{validation_prompt if validation_prompt else instance_prompt}').images[0] diff --git a/scripts/convert_blipdiffusion_to_diffusers.py b/scripts/convert_blipdiffusion_to_diffusers.py index 03cf67e5476b..c4f5012110cc 100644 --- a/scripts/convert_blipdiffusion_to_diffusers.py +++ b/scripts/convert_blipdiffusion_to_diffusers.py @@ -303,10 +303,9 @@ def save_blip_diffusion_model(model, args): qformer = get_qformer(model) qformer.eval() - text_encoder = ContextCLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder") - vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae") - - unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet") + text_encoder = ContextCLIPTextModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="text_encoder") + vae = AutoencoderKL.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="vae") + unet = UNet2DConditionModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="unet") vae.eval() text_encoder.eval() scheduler = PNDMScheduler( @@ -316,7 +315,7 @@ def save_blip_diffusion_model(model, args): set_alpha_to_one=False, skip_prk_steps=True, ) - tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer") + tokenizer = CLIPTokenizer.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="tokenizer") image_processor = BlipImageProcessor() blip_diffusion = BlipDiffusionPipeline( tokenizer=tokenizer, diff --git a/src/diffusers/loaders/single_file.py b/src/diffusers/loaders/single_file.py index c0cbfc713857..c5c9bea29b8a 100644 --- a/src/diffusers/loaders/single_file.py +++ b/src/diffusers/loaders/single_file.py @@ -329,7 +329,7 @@ def from_single_file(cls, pretrained_model_link_or_path, **kwargs): >>> # Enable float16 and move to GPU >>> pipeline = StableDiffusionPipeline.from_single_file( - ... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt", + ... "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt", ... torch_dtype=torch.float16, ... ) >>> pipeline.to("cuda") diff --git a/src/diffusers/loaders/textual_inversion.py b/src/diffusers/loaders/textual_inversion.py index 0162d67a340c..095d154cb4fe 100644 --- a/src/diffusers/loaders/textual_inversion.py +++ b/src/diffusers/loaders/textual_inversion.py @@ -333,7 +333,7 @@ def load_textual_inversion( from diffusers import StableDiffusionPipeline import torch - model_id = "runwayml/stable-diffusion-v1-5" + model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") pipe.load_textual_inversion("sd-concepts-library/cat-toy") @@ -352,7 +352,7 @@ def load_textual_inversion( from diffusers import StableDiffusionPipeline import torch - model_id = "runwayml/stable-diffusion-v1-5" + model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2") @@ -469,7 +469,7 @@ def unload_textual_inversion( from diffusers import AutoPipelineForText2Image import torch - pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5") + pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5") # Example 1 pipeline.load_textual_inversion("sd-concepts-library/gta5-artwork") diff --git a/src/diffusers/models/autoencoders/consistency_decoder_vae.py b/src/diffusers/models/autoencoders/consistency_decoder_vae.py index a97249f79473..4759b9141242 100644 --- a/src/diffusers/models/autoencoders/consistency_decoder_vae.py +++ b/src/diffusers/models/autoencoders/consistency_decoder_vae.py @@ -60,7 +60,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin): >>> vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16) >>> pipe = StableDiffusionPipeline.from_pretrained( - ... "runwayml/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16 + ... "stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16 ... ).to("cuda") >>> image = pipe("horse", generator=torch.manual_seed(0)).images[0] diff --git a/src/diffusers/pipelines/auto_pipeline.py b/src/diffusers/pipelines/auto_pipeline.py index a3e2fc6de78f..8bbf1ebe9fa5 100644 --- a/src/diffusers/pipelines/auto_pipeline.py +++ b/src/diffusers/pipelines/auto_pipeline.py @@ -293,7 +293,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs): If you get the error message below, you need to finetune the weights for your downstream task: ``` - Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: + Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. ``` @@ -385,7 +385,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs): ```py >>> from diffusers import AutoPipelineForText2Image - >>> pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5") + >>> pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5") >>> image = pipeline(prompt).images[0] ``` """ @@ -448,7 +448,7 @@ def from_pipe(cls, pipeline, **kwargs): >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image >>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained( - ... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False + ... "stable-diffusion-v1-5/stable-diffusion-v1-5", requires_safety_checker=False ... ) >>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i) @@ -589,7 +589,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs): If you get the error message below, you need to finetune the weights for your downstream task: ``` - Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: + Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. ``` @@ -681,7 +681,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs): ```py >>> from diffusers import AutoPipelineForImage2Image - >>> pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5") + >>> pipeline = AutoPipelineForImage2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5") >>> image = pipeline(prompt, image).images[0] ``` """ @@ -756,7 +756,7 @@ def from_pipe(cls, pipeline, **kwargs): >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image >>> pipe_t2i = AutoPipelineForText2Image.from_pretrained( - ... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False + ... "stable-diffusion-v1-5/stable-diffusion-v1-5", requires_safety_checker=False ... ) >>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i) @@ -900,7 +900,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs): If you get the error message below, you need to finetune the weights for your downstream task: ``` - Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: + Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. ``` @@ -992,7 +992,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs): ```py >>> from diffusers import AutoPipelineForInpainting - >>> pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5") + >>> pipeline = AutoPipelineForInpainting.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5") >>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0] ``` """ diff --git a/src/diffusers/pipelines/controlnet/pipeline_controlnet.py b/src/diffusers/pipelines/controlnet/pipeline_controlnet.py index 582f51ab480e..99ce7e17cc5a 100644 --- a/src/diffusers/pipelines/controlnet/pipeline_controlnet.py +++ b/src/diffusers/pipelines/controlnet/pipeline_controlnet.py @@ -80,7 +80,7 @@ >>> # load control net and stable diffusion v1-5 >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) >>> pipe = StableDiffusionControlNetPipeline.from_pretrained( - ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 + ... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ... ) >>> # speed up diffusion process with faster scheduler and memory optimization @@ -198,7 +198,7 @@ class StableDiffusionControlNetPipeline( [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. diff --git a/src/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py b/src/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py index 59ac30d70d77..1c9e1a10bec3 100644 --- a/src/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +++ b/src/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py @@ -71,7 +71,7 @@ >>> # load control net and stable diffusion v1-5 >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) >>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( - ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 + ... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ... ) >>> # speed up diffusion process with faster scheduler and memory optimization @@ -168,7 +168,7 @@ class StableDiffusionControlNetImg2ImgPipeline( [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. diff --git a/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py b/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py index 977b852a89c9..f380bb9cdf7e 100644 --- a/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +++ b/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py @@ -83,7 +83,7 @@ ... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16 ... ) >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( - ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 + ... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ... ) >>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) @@ -141,9 +141,9 @@ class StableDiffusionControlNetInpaintPipeline( This pipeline can be used with checkpoints that have been specifically fine-tuned for inpainting - ([runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting)) as well as + ([stable-diffusion-v1-5/stable-diffusion-inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting)) as well as default text-to-image Stable Diffusion checkpoints - ([runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)). Default text-to-image + ([stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)). Default text-to-image Stable Diffusion checkpoints might be preferable for ControlNets that have been fine-tuned on those, such as [lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint). @@ -167,7 +167,7 @@ class StableDiffusionControlNetInpaintPipeline( [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. diff --git a/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py b/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py index c6c4ce935a1f..4ec78c5b990f 100644 --- a/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +++ b/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py @@ -1622,7 +1622,7 @@ def denoising_value_valid(dnv): # 8. Check that sizes of mask, masked image and latents match if num_channels_unet == 9: - # default case for runwayml/stable-diffusion-inpainting + # default case for stable-diffusion-v1-5/stable-diffusion-inpainting num_channels_mask = mask.shape[1] num_channels_masked_image = masked_image_latents.shape[1] if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: diff --git a/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py b/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py index 8a2cc08dbb2b..890604f35250 100644 --- a/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +++ b/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py @@ -75,7 +75,7 @@ ... "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.float32 ... ) >>> pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( - ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32 + ... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32 ... ) >>> params["controlnet"] = controlnet_params @@ -132,7 +132,7 @@ class FlaxStableDiffusionControlNetPipeline(FlaxDiffusionPipeline): [`FlaxDPMSolverMultistepScheduler`]. safety_checker ([`FlaxStableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. diff --git a/src/diffusers/pipelines/pipeline_flax_utils.py b/src/diffusers/pipelines/pipeline_flax_utils.py index f7b101124181..82ed86bdcafd 100644 --- a/src/diffusers/pipelines/pipeline_flax_utils.py +++ b/src/diffusers/pipelines/pipeline_flax_utils.py @@ -237,14 +237,14 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P If you get the error message below, you need to finetune the weights for your downstream task: ``` - Some weights of FlaxUNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: + Some weights of FlaxUNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: ``` Parameters: pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): Can be either: - - A string, the *repo id* (for example `runwayml/stable-diffusion-v1-5`) of a pretrained pipeline + - A string, the *repo id* (for example `stable-diffusion-v1-5/stable-diffusion-v1-5`) of a pretrained pipeline hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved using [`~FlaxDiffusionPipeline.save_pretrained`]. @@ -293,7 +293,7 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P >>> # Requires to be logged in to Hugging Face hub, >>> # see more in [the documentation](https://huggingface.co/docs/hub/security-tokens) >>> pipeline, params = FlaxDiffusionPipeline.from_pretrained( - ... "runwayml/stable-diffusion-v1-5", + ... "stable-diffusion-v1-5/stable-diffusion-v1-5", ... variant="bf16", ... dtype=jnp.bfloat16, ... ) @@ -301,7 +301,7 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P >>> # Download pipeline, but use a different scheduler >>> from diffusers import FlaxDPMSolverMultistepScheduler - >>> model_id = "runwayml/stable-diffusion-v1-5" + >>> model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5" >>> dpmpp, dpmpp_state = FlaxDPMSolverMultistepScheduler.from_pretrained( ... model_id, ... subfolder="scheduler", @@ -559,7 +559,7 @@ def components(self) -> Dict[str, Any]: ... ) >>> text2img = FlaxStableDiffusionPipeline.from_pretrained( - ... "runwayml/stable-diffusion-v1-5", variant="bf16", dtype=jnp.bfloat16 + ... "stable-diffusion-v1-5/stable-diffusion-v1-5", variant="bf16", dtype=jnp.bfloat16 ... ) >>> img2img = FlaxStableDiffusionImg2ImgPipeline(**text2img.components) ``` diff --git a/src/diffusers/pipelines/pipeline_loading_utils.py b/src/diffusers/pipelines/pipeline_loading_utils.py index 0a7a222ec007..23f1279e203d 100644 --- a/src/diffusers/pipelines/pipeline_loading_utils.py +++ b/src/diffusers/pipelines/pipeline_loading_utils.py @@ -813,9 +813,9 @@ def _maybe_raise_warning_for_inpainting(pipeline_class, pretrained_model_name_or "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the" f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For" " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting" - " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your" + " checkpoint: https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting instead or adapting your" f" checkpoint {pretrained_model_name_or_path} to the format of" - " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain" + " https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting. Note that we do not actively maintain" " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0." ) deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False) diff --git a/src/diffusers/pipelines/pipeline_utils.py b/src/diffusers/pipelines/pipeline_utils.py index c505c5a262a3..be900ca4469b 100644 --- a/src/diffusers/pipelines/pipeline_utils.py +++ b/src/diffusers/pipelines/pipeline_utils.py @@ -516,7 +516,7 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P If you get the error message below, you need to finetune the weights for your downstream task: ``` - Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: + Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. ``` @@ -643,7 +643,7 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P >>> # Download pipeline that requires an authorization token >>> # For more information on access tokens, please refer to this section >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens) - >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") + >>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5") >>> # Use a different scheduler >>> from diffusers import LMSDiscreteScheduler @@ -1555,7 +1555,7 @@ def components(self) -> Dict[str, Any]: ... StableDiffusionInpaintPipeline, ... ) - >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") + >>> text2img = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5") >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components) >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components) ``` @@ -1688,7 +1688,7 @@ def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto >>> from diffusers import StableDiffusionPipeline >>> pipe = StableDiffusionPipeline.from_pretrained( - ... "runwayml/stable-diffusion-v1-5", + ... "stable-diffusion-v1-5/stable-diffusion-v1-5", ... torch_dtype=torch.float16, ... use_safetensors=True, ... ) @@ -1735,7 +1735,7 @@ def from_pipe(cls, pipeline, **kwargs): ```py >>> from diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline - >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") + >>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5") >>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe) ``` """ diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py b/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py index 5d6ffd463cc3..6e5a547157b5 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py @@ -55,7 +55,7 @@ >>> from diffusers import FlaxStableDiffusionPipeline >>> pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( - ... "runwayml/stable-diffusion-v1-5", variant="bf16", dtype=jax.numpy.bfloat16 + ... "stable-diffusion-v1-5/stable-diffusion-v1-5", variant="bf16", dtype=jax.numpy.bfloat16 ... ) >>> prompt = "a photo of an astronaut riding a horse on mars" @@ -100,7 +100,7 @@ class FlaxStableDiffusionPipeline(FlaxDiffusionPipeline): [`FlaxDPMSolverMultistepScheduler`]. safety_checker ([`FlaxStableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. @@ -141,8 +141,8 @@ def __init__( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" - " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" - " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" + " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" + " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py b/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py index 7792bc097595..12639e9650e3 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py @@ -124,7 +124,7 @@ class FlaxStableDiffusionImg2ImgPipeline(FlaxDiffusionPipeline): [`FlaxDPMSolverMultistepScheduler`]. safety_checker ([`FlaxStableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py b/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py index f6bb0ac299b3..0ee8e004b0c9 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py @@ -127,7 +127,7 @@ class FlaxStableDiffusionInpaintPipeline(FlaxDiffusionPipeline): [`FlaxDPMSolverMultistepScheduler`]. safety_checker ([`FlaxStableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. @@ -168,8 +168,8 @@ def __init__( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" - " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" - " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" + " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" + " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py b/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py index c39409886bd9..1a45d901e0d5 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py @@ -78,7 +78,7 @@ class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline): [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. + Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py b/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py index 18d8050826cc..72b05e29b5bf 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py @@ -76,7 +76,7 @@ class OnnxStableDiffusionInpaintPipeline(DiffusionPipeline): [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. + Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py index ac6c8253e432..48aac0f6550a 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py @@ -55,7 +55,7 @@ >>> import torch >>> from diffusers import StableDiffusionPipeline - >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) + >>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16) >>> pipe = pipe.to("cuda") >>> prompt = "a photo of an astronaut riding a horse on mars" @@ -184,7 +184,7 @@ class StableDiffusionPipeline( [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. @@ -266,8 +266,8 @@ def __init__( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" - " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" - " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" + " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" + " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py index 7801b0d01dff..9e758d91cadd 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py @@ -124,8 +124,8 @@ def __init__( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" - " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" - " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" + " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" + " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py index 93a8bd160318..3ee987d7be87 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py @@ -57,7 +57,7 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. @@ -106,8 +106,8 @@ def __init__( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" - " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" - " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" + " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" + " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py index 9cd5673c9359..73bd3d614e68 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py @@ -56,7 +56,7 @@ >>> from diffusers import StableDiffusionImg2ImgPipeline >>> device = "cuda" - >>> model_id_or_path = "runwayml/stable-diffusion-v1-5" + >>> model_id_or_path = "stable-diffusion-v1-5/stable-diffusion-v1-5" >>> pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16) >>> pipe = pipe.to(device) @@ -205,7 +205,7 @@ class StableDiffusionImg2ImgPipeline( [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. @@ -282,8 +282,8 @@ def __init__( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" - " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" - " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" + " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" + " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py index 49c38c800942..8556962cb743 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py @@ -146,7 +146,7 @@ class StableDiffusionInpaintPipeline( [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. @@ -224,8 +224,8 @@ def __init__( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" - " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" - " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" + " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" + " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" @@ -1014,7 +1014,7 @@ def __call__( >>> mask_image = download_image(mask_url).resize((512, 512)) >>> pipe = StableDiffusionInpaintPipeline.from_pretrained( - ... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16 + ... "stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") @@ -1200,7 +1200,7 @@ def __call__( # 8. Check that sizes of mask, masked image and latents match if num_channels_unet == 9: - # default case for runwayml/stable-diffusion-inpainting + # default case for stable-diffusion-v1-5/stable-diffusion-inpainting num_channels_mask = mask.shape[1] num_channels_masked_image = masked_image_latents.shape[1] if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py index fd89b195c778..7601f091e546 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py @@ -106,7 +106,7 @@ class StableDiffusionInstructPix2PixPipeline( [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. diff --git a/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py b/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py index 8f40fa72a25c..45e72a8f9edd 100644 --- a/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +++ b/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py @@ -194,7 +194,7 @@ class StableDiffusionAttendAndExcitePipeline(DiffusionPipeline, StableDiffusionM [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. diff --git a/src/diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py b/src/diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py index 2b86470dbff1..80716bde02ce 100644 --- a/src/diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +++ b/src/diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py @@ -268,7 +268,7 @@ class StableDiffusionDiffEditPipeline( A scheduler to be used in combination with `unet` to fill in the unmasked part of the input latents. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. @@ -345,8 +345,8 @@ def __init__( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" - " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" - " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" + " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" + " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" diff --git a/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py b/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py index 52ccd5612776..7aac1401fdde 100644 --- a/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +++ b/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py @@ -120,7 +120,7 @@ class StableDiffusionGLIGENPipeline(DiffusionPipeline, StableDiffusionMixin): [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. diff --git a/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py b/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py index 6c36ec173539..92c91146178b 100644 --- a/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +++ b/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py @@ -172,7 +172,7 @@ class StableDiffusionGLIGENTextImagePipeline(DiffusionPipeline, StableDiffusionM [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. diff --git a/src/diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py b/src/diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py index 122701ff923f..dfefd4b06ba6 100755 --- a/src/diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +++ b/src/diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py @@ -83,7 +83,7 @@ class StableDiffusionKDiffusionPipeline( [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. + Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ diff --git a/src/diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py b/src/diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py index 81bb0e9a7270..d5d72a3f2e9e 100644 --- a/src/diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +++ b/src/diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py @@ -203,7 +203,7 @@ class StableDiffusionLDM3DPipeline( [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. diff --git a/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py b/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py index 2fc79c0610f0..d91f2508b042 100644 --- a/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +++ b/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py @@ -179,7 +179,7 @@ class StableDiffusionPanoramaPipeline( [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. diff --git a/src/diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py b/src/diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py index cd59cf51869d..d7e37c235a22 100644 --- a/src/diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +++ b/src/diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py @@ -46,7 +46,7 @@ class StableDiffusionPipelineSafe(DiffusionPipeline, StableDiffusionMixin, IPAda [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. @@ -126,8 +126,8 @@ def __init__( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" - " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" - " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" + " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" + " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" diff --git a/src/diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py b/src/diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py index c32052d2e4d0..0fc92de21d1a 100644 --- a/src/diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +++ b/src/diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py @@ -47,7 +47,7 @@ >>> from diffusers import StableDiffusionSAGPipeline >>> pipe = StableDiffusionSAGPipeline.from_pretrained( - ... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 + ... "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") @@ -123,7 +123,7 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, StableDiffusionMixin, Textua [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. diff --git a/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py b/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py index 1a938aaf9423..d6a8e20c7389 100644 --- a/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +++ b/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py @@ -208,7 +208,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin): [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. + Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ diff --git a/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py b/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py index 20569d0adb32..e18bc1ed9780 100644 --- a/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +++ b/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py @@ -248,7 +248,7 @@ class StableDiffusionXLAdapterPipeline( [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. + Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ diff --git a/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py b/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py index f7f5d86a0888..512446c4f6c6 100644 --- a/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +++ b/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py @@ -322,7 +322,7 @@ class TextToVideoZeroPipeline( [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. - Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`CLIPImageProcessor`]): A [`CLIPImageProcessor`] to extract features from generated images; used as inputs to the `safety_checker`.