diff --git a/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py b/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py index e2236a7f20ad..9be79cfe7dc9 100644 --- a/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +++ b/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py @@ -786,7 +786,7 @@ def __init__( self.use_tiling = False # When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames - # at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered. + # at a fixed frame batch size (based on `self.tile_sample_min_num_frames`), the memory requirement can be lowered. self.use_framewise_encoding = True self.use_framewise_decoding = True @@ -868,7 +868,7 @@ def disable_slicing(self) -> None: def _encode(self, x: torch.Tensor) -> torch.Tensor: batch_size, num_channels, num_frames, height, width = x.shape - if self.use_framewise_decoding and num_frames > self.tile_sample_min_num_frames: + if self.use_framewise_encoding and num_frames > self.tile_sample_min_num_frames: return self._temporal_tiled_encode(x) if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):