diff --git a/docs/source/en/using-diffusers/weighted_prompts.md b/docs/source/en/using-diffusers/weighted_prompts.md
index 712eebc9450c..f310d8f49550 100644
--- a/docs/source/en/using-diffusers/weighted_prompts.md
+++ b/docs/source/en/using-diffusers/weighted_prompts.md
@@ -215,7 +215,7 @@ image
 
 Prompt weighting provides a way to emphasize or de-emphasize certain parts of a prompt, allowing for more control over the generated image. A prompt can include several concepts, which gets turned into contextualized text embeddings. The embeddings are used by the model to condition its cross-attention layers to generate an image (read the Stable Diffusion [blog post](https://huggingface.co/blog/stable_diffusion) to learn more about how it works).
 
-Prompt weighting works by increasing or decreasing the scale of the text embedding vector that corresponds to its concept in the prompt because you may not necessarily want the model to focus on all concepts equally. The easiest way to prepare the prompt-weighted embeddings is to use [Compel](https://github.com/damian0815/compel), a text prompt-weighting and blending library. Once you have the prompt-weighted embeddings, you can pass them to any pipeline that has a [`prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.prompt_embeds) (and optionally [`negative_prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.negative_prompt_embeds)) parameter, such as [`StableDiffusionPipeline`], [`StableDiffusionControlNetPipeline`], and [`StableDiffusionXLPipeline`].
+Prompt weighting works by increasing or decreasing the scale of the text embedding vector that corresponds to its concept in the prompt because you may not necessarily want the model to focus on all concepts equally. The easiest way to prepare the prompt embeddings is to use [Stable Diffusion Long Prompt Weighted Embedding](https://github.com/xhinker/sd_embed) (sd_embed). Once you have the prompt-weighted embeddings, you can pass them to any pipeline that has a [prompt_embeds](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.prompt_embeds) (and optionally [negative_prompt_embeds](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.negative_prompt_embeds)) parameter, such as [`StableDiffusionPipeline`], [`StableDiffusionControlNetPipeline`], and [`StableDiffusionXLPipeline`].
 
 
 
@@ -223,136 +223,99 @@ If your favorite pipeline doesn't have a `prompt_embeds` parameter, please open
 
 
 
-This guide will show you how to weight and blend your prompts with Compel in 🤗 Diffusers.
+This guide will show you how to weight your prompts with sd_embed.
 
-Before you begin, make sure you have the latest version of Compel installed:
+Before you begin, make sure you have the latest version of sd_embed installed:
 
-```py
-# uncomment to install in Colab
-#!pip install compel --upgrade
+```bash
+pip install git+https://github.com/xhinker/sd_embed.git@main
 ```
 
-For this guide, let's generate an image with the prompt `"a red cat playing with a ball"` using the [`StableDiffusionPipeline`]:
+For this example, let's use [`StableDiffusionXLPipeline`].
 
 ```py
-from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler
+from diffusers import StableDiffusionXLPipeline, UniPCMultistepScheduler
 import torch
 
-pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_safetensors=True)
+pipe = StableDiffusionXLPipeline.from_pretrained("Lykon/dreamshaper-xl-1-0", torch_dtype=torch.float16)
 pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
 pipe.to("cuda")
-
-prompt = "a red cat playing with a ball"
-
-generator = torch.Generator(device="cpu").manual_seed(33)
-
-image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]
-image
-```
-
-
-  

-
-  

-
-  

-
-  

-
-  

+  
 
 
-  

-
-  

+  
 
 
-  

-
-  
-    

-    
"a red cat playing with a (ball)1.5"
-  
-  
-    

-    
"a red cat playing with a (ball)0.6"
-  
+
+  
