diff --git a/tests/pipelines/dit/test_dit.py b/tests/pipelines/dit/test_dit.py index 18732c0058de..65f39db078e4 100644 --- a/tests/pipelines/dit/test_dit.py +++ b/tests/pipelines/dit/test_dit.py @@ -21,7 +21,15 @@ from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DiTTransformer2DModel, DPMSolverMultistepScheduler from diffusers.utils import is_xformers_available -from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, nightly, require_torch_gpu, torch_device +from diffusers.utils.testing_utils import ( + backend_empty_cache, + enable_full_determinism, + load_numpy, + nightly, + numpy_cosine_similarity_distance, + require_torch_accelerator, + torch_device, +) from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, @@ -107,23 +115,23 @@ def test_xformers_attention_forwardGenerator_pass(self): @nightly -@require_torch_gpu +@require_torch_accelerator class DiTPipelineIntegrationTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() - torch.cuda.empty_cache() + backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() - torch.cuda.empty_cache() + backend_empty_cache(torch_device) def test_dit_256(self): generator = torch.manual_seed(0) pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256") - pipe.to("cuda") + pipe.to(torch_device) words = ["vase", "umbrella", "white shark", "white wolf"] ids = pipe.get_label_ids(words) @@ -139,7 +147,7 @@ def test_dit_256(self): def test_dit_512(self): pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) - pipe.to("cuda") + pipe.to(torch_device) words = ["vase", "umbrella"] ids = pipe.get_label_ids(words) @@ -152,4 +160,7 @@ def test_dit_512(self): f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}_512.npy" ) - assert np.abs((expected_image - image).max()) < 1e-1 + expected_slice = expected_image.flatten() + output_slice = image.flatten() + + assert numpy_cosine_similarity_distance(expected_slice, output_slice) < 1e-2