Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 18 additions & 7 deletions tests/pipelines/dit/test_dit.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,15 @@

from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DiTTransformer2DModel, DPMSolverMultistepScheduler
from diffusers.utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, nightly, require_torch_gpu, torch_device
from diffusers.utils.testing_utils import (
backend_empty_cache,
enable_full_determinism,
load_numpy,
nightly,
numpy_cosine_similarity_distance,
require_torch_accelerator,
torch_device,
)

from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
Expand Down Expand Up @@ -107,23 +115,23 @@ def test_xformers_attention_forwardGenerator_pass(self):


@nightly
@require_torch_gpu
@require_torch_accelerator
class DiTPipelineIntegrationTests(unittest.TestCase):
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
backend_empty_cache(torch_device)

def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
backend_empty_cache(torch_device)

def test_dit_256(self):
generator = torch.manual_seed(0)

pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256")
pipe.to("cuda")
pipe.to(torch_device)

words = ["vase", "umbrella", "white shark", "white wolf"]
ids = pipe.get_label_ids(words)
Expand All @@ -139,7 +147,7 @@ def test_dit_256(self):
def test_dit_512(self):
pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
pipe.to(torch_device)

words = ["vase", "umbrella"]
ids = pipe.get_label_ids(words)
Expand All @@ -152,4 +160,7 @@ def test_dit_512(self):
f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}_512.npy"
)

assert np.abs((expected_image - image).max()) < 1e-1
expected_slice = expected_image.flatten()
output_slice = image.flatten()

assert numpy_cosine_similarity_distance(expected_slice, output_slice) < 1e-2