diff --git a/src/diffusers/pipelines/wan/pipeline_wan_vace.py b/src/diffusers/pipelines/wan/pipeline_wan_vace.py index e5f83dd401ad..99e1f5116b85 100644 --- a/src/diffusers/pipelines/wan/pipeline_wan_vace.py +++ b/src/diffusers/pipelines/wan/pipeline_wan_vace.py @@ -525,8 +525,7 @@ def prepare_video_latents( latents = retrieve_latents(self.vae.encode(video), generator, sample_mode="argmax").unbind(0) latents = ((latents.float() - latents_mean) * latents_std).to(vae_dtype) else: - mask = mask.to(dtype=vae_dtype) - mask = torch.where(mask > 0.5, 1.0, 0.0) + mask = torch.where(mask > 0.5, 1.0, 0.0).to(dtype=vae_dtype) inactive = video * (1 - mask) reactive = video * mask inactive = retrieve_latents(self.vae.encode(inactive), generator, sample_mode="argmax") diff --git a/tests/lora/test_lora_layers_wanvace.py b/tests/lora/test_lora_layers_wanvace.py index f976577653b2..a0954fa4fa05 100644 --- a/tests/lora/test_lora_layers_wanvace.py +++ b/tests/lora/test_lora_layers_wanvace.py @@ -18,7 +18,6 @@ import unittest import numpy as np -import pytest import safetensors.torch import torch from PIL import Image @@ -160,11 +159,6 @@ def test_simple_inference_with_text_lora_fused(self): def test_simple_inference_with_text_lora_save_load(self): pass - @pytest.mark.xfail( - condition=True, - reason="RuntimeError: Input type (float) and bias type (c10::BFloat16) should be the same", - strict=True, - ) def test_layerwise_casting_inference_denoiser(self): super().test_layerwise_casting_inference_denoiser()