diff --git a/scripts/convert_cogview3_to_diffusers.py b/scripts/convert_cogview3_to_diffusers.py new file mode 100644 index 000000000000..0af757969293 --- /dev/null +++ b/scripts/convert_cogview3_to_diffusers.py @@ -0,0 +1,183 @@ +""" +Convert a CogView3 checkpoint to the Diffusers format. + +This script converts a CogView3 checkpoint to the Diffusers format, which can then be used +with the Diffusers library. + +Example usage: + python scripts/convert_cogview3_to_diffusers.py \ + --original_state_dict_repo_id "THUDM/cogview3" \ + --filename "cogview3.pt" \ + --transformer \ + --output_path "./cogview3_diffusers" \ + --dtype "bf16" + +Alternatively, if you have a local checkpoint: + python scripts/convert_cogview3_to_diffusers.py \ + --checkpoint_path '/raid/.cache/huggingface/models--ZP2HF--CogView3-SAT/snapshots/ca86ce9ba94f9a7f2dd109e7a59e4c8ad04121be/cogview3plus_3b/1/mp_rank_00_model_states.pt' \ + --transformer \ + --output_path "/raid/yiyi/cogview3_diffusers" \ + --dtype "bf16" + +Arguments: + --original_state_dict_repo_id: The Hugging Face repo ID containing the original checkpoint. + --filename: The filename of the checkpoint in the repo (default: "flux.safetensors"). + --checkpoint_path: Path to a local checkpoint file (alternative to repo_id and filename). + --transformer: Flag to convert the transformer model. + --output_path: The path to save the converted model. + --dtype: The dtype to save the model in (default: "bf16", options: "fp16", "bf16", "fp32"). + +Note: You must provide either --original_state_dict_repo_id or --checkpoint_path. +""" + +import argparse +from contextlib import nullcontext + +import torch +from accelerate import init_empty_weights +from huggingface_hub import hf_hub_download + +from diffusers import CogView3PlusTransformer2DModel +from diffusers.utils.import_utils import is_accelerate_available + + +CTX = init_empty_weights if is_accelerate_available else nullcontext + +parser = argparse.ArgumentParser() +parser.add_argument("--original_state_dict_repo_id", default=None, type=str) +parser.add_argument("--filename", default="flux.safetensors", type=str) +parser.add_argument("--checkpoint_path", default=None, type=str) +parser.add_argument("--transformer", action="store_true") +parser.add_argument("--output_path", type=str) +parser.add_argument("--dtype", type=str, default="bf16") + +args = parser.parse_args() + + +def load_original_checkpoint(args): + if args.original_state_dict_repo_id is not None: + ckpt_path = hf_hub_download(repo_id=args.original_state_dict_repo_id, filename=args.filename) + elif args.checkpoint_path is not None: + ckpt_path = args.checkpoint_path + else: + raise ValueError("Please provide either `original_state_dict_repo_id` or a local `checkpoint_path`") + + original_state_dict = torch.load(ckpt_path, map_location="cpu") + return original_state_dict + + +# this is specific to `AdaLayerNormContinuous`: +# diffusers imnplementation split the linear projection into the scale, shift while CogView3 split it tino shift, scale +def swap_scale_shift(weight, dim): + shift, scale = weight.chunk(2, dim=0) + new_weight = torch.cat([scale, shift], dim=0) + return new_weight + + +def convert_cogview3_transformer_checkpoint_to_diffusers(original_state_dict): + new_state_dict = {} + + # Convert pos_embed + new_state_dict["pos_embed.proj.weight"] = original_state_dict.pop("mixins.patch_embed.proj.weight") + new_state_dict["pos_embed.proj.bias"] = original_state_dict.pop("mixins.patch_embed.proj.bias") + new_state_dict["pos_embed.text_proj.weight"] = original_state_dict.pop("mixins.patch_embed.text_proj.weight") + new_state_dict["pos_embed.text_proj.bias"] = original_state_dict.pop("mixins.patch_embed.text_proj.bias") + + # Convert time_text_embed + new_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop( + "time_embed.0.weight" + ) + new_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop("time_embed.0.bias") + new_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop( + "time_embed.2.weight" + ) + new_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop("time_embed.2.bias") + new_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop("label_emb.0.0.weight") + new_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop("label_emb.0.0.bias") + new_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop("label_emb.0.2.weight") + new_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop("label_emb.0.2.bias") + + # Convert transformer blocks + for i in range(30): + block_prefix = f"transformer_blocks.{i}." + old_prefix = f"transformer.layers.{i}." + adaln_prefix = f"mixins.adaln.adaln_modules.{i}." + + new_state_dict[block_prefix + "norm1.linear.weight"] = original_state_dict.pop(adaln_prefix + "1.weight") + new_state_dict[block_prefix + "norm1.linear.bias"] = original_state_dict.pop(adaln_prefix + "1.bias") + + qkv_weight = original_state_dict.pop(old_prefix + "attention.query_key_value.weight") + qkv_bias = original_state_dict.pop(old_prefix + "attention.query_key_value.bias") + q, k, v = qkv_weight.chunk(3, dim=0) + q_bias, k_bias, v_bias = qkv_bias.chunk(3, dim=0) + + new_state_dict[block_prefix + "attn.to_q.weight"] = q + new_state_dict[block_prefix + "attn.to_q.bias"] = q_bias + new_state_dict[block_prefix + "attn.to_k.weight"] = k + new_state_dict[block_prefix + "attn.to_k.bias"] = k_bias + new_state_dict[block_prefix + "attn.to_v.weight"] = v + new_state_dict[block_prefix + "attn.to_v.bias"] = v_bias + + new_state_dict[block_prefix + "attn.to_out.0.weight"] = original_state_dict.pop( + old_prefix + "attention.dense.weight" + ) + new_state_dict[block_prefix + "attn.to_out.0.bias"] = original_state_dict.pop( + old_prefix + "attention.dense.bias" + ) + + new_state_dict[block_prefix + "ff.net.0.proj.weight"] = original_state_dict.pop( + old_prefix + "mlp.dense_h_to_4h.weight" + ) + new_state_dict[block_prefix + "ff.net.0.proj.bias"] = original_state_dict.pop( + old_prefix + "mlp.dense_h_to_4h.bias" + ) + new_state_dict[block_prefix + "ff.net.2.weight"] = original_state_dict.pop( + old_prefix + "mlp.dense_4h_to_h.weight" + ) + new_state_dict[block_prefix + "ff.net.2.bias"] = original_state_dict.pop(old_prefix + "mlp.dense_4h_to_h.bias") + + # Convert final norm and projection + new_state_dict["norm_out.linear.weight"] = swap_scale_shift( + original_state_dict.pop("mixins.final_layer.adaln.1.weight"), dim=0 + ) + new_state_dict["norm_out.linear.bias"] = swap_scale_shift( + original_state_dict.pop("mixins.final_layer.adaln.1.bias"), dim=0 + ) + new_state_dict["proj_out.weight"] = original_state_dict.pop("mixins.final_layer.linear.weight") + new_state_dict["proj_out.bias"] = original_state_dict.pop("mixins.final_layer.linear.bias") + + return new_state_dict + + +def main(args): + original_ckpt = load_original_checkpoint(args) + original_ckpt = original_ckpt["module"] + original_ckpt = {k.replace("model.diffusion_model.", ""): v for k, v in original_ckpt.items()} + + original_dtype = next(iter(original_ckpt.values())).dtype + dtype = None + if args.dtype is None: + dtype = original_dtype + elif args.dtype == "fp16": + dtype = torch.float16 + elif args.dtype == "bf16": + dtype = torch.bfloat16 + elif args.dtype == "fp32": + dtype = torch.float32 + else: + raise ValueError(f"Unsupported dtype: {args.dtype}") + + if args.transformer: + converted_transformer_state_dict = convert_cogview3_transformer_checkpoint_to_diffusers(original_ckpt) + transformer = CogView3PlusTransformer2DModel() + transformer.load_state_dict(converted_transformer_state_dict, strict=True) + + print(f"Saving CogView3 Transformer in Diffusers format in {args.output_path}/transformer") + transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer") + + if len(original_ckpt) > 0: + print(f"Warning: {len(original_ckpt)} keys were not converted and will be saved as is: {original_ckpt.keys()}") + + +if __name__ == "__main__": + main(args) diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py index 4214a4699ec8..978e7047e666 100644 --- a/src/diffusers/__init__.py +++ b/src/diffusers/__init__.py @@ -84,6 +84,7 @@ "AutoencoderOobleck", "AutoencoderTiny", "CogVideoXTransformer3DModel", + "CogView3PlusTransformer2DModel", "ConsistencyDecoderVAE", "ControlNetModel", "ControlNetXSAdapter", @@ -258,6 +259,7 @@ "CogVideoXImageToVideoPipeline", "CogVideoXPipeline", "CogVideoXVideoToVideoPipeline", + "CogView3PlusPipeline", "CycleDiffusionPipeline", "FluxControlNetImg2ImgPipeline", "FluxControlNetInpaintPipeline", @@ -558,6 +560,7 @@ AutoencoderOobleck, AutoencoderTiny, CogVideoXTransformer3DModel, + CogView3PlusTransformer2DModel, ConsistencyDecoderVAE, ControlNetModel, ControlNetXSAdapter, @@ -710,6 +713,7 @@ CogVideoXImageToVideoPipeline, CogVideoXPipeline, CogVideoXVideoToVideoPipeline, + CogView3PlusPipeline, CycleDiffusionPipeline, FluxControlNetImg2ImgPipeline, FluxControlNetInpaintPipeline, diff --git a/src/diffusers/models/__init__.py b/src/diffusers/models/__init__.py index f0dd7248c117..4dda8c36ba1c 100644 --- a/src/diffusers/models/__init__.py +++ b/src/diffusers/models/__init__.py @@ -54,6 +54,7 @@ _import_structure["transformers.stable_audio_transformer"] = ["StableAudioDiTModel"] _import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"] _import_structure["transformers.transformer_2d"] = ["Transformer2DModel"] + _import_structure["transformers.transformer_cogview3plus"] = ["CogView3PlusTransformer2DModel"] _import_structure["transformers.transformer_flux"] = ["FluxTransformer2DModel"] _import_structure["transformers.transformer_sd3"] = ["SD3Transformer2DModel"] _import_structure["transformers.transformer_temporal"] = ["TransformerTemporalModel"] @@ -98,6 +99,7 @@ from .transformers import ( AuraFlowTransformer2DModel, CogVideoXTransformer3DModel, + CogView3PlusTransformer2DModel, DiTTransformer2DModel, DualTransformer2DModel, FluxTransformer2DModel, diff --git a/src/diffusers/models/attention_processor.py b/src/diffusers/models/attention_processor.py index 9f9bc5a46e10..2ef3c6a80830 100644 --- a/src/diffusers/models/attention_processor.py +++ b/src/diffusers/models/attention_processor.py @@ -122,6 +122,7 @@ def __init__( out_dim: int = None, context_pre_only=None, pre_only=False, + layrnorm_elementwise_affine: bool = True, ): super().__init__() @@ -179,8 +180,8 @@ def __init__( self.norm_q = None self.norm_k = None elif qk_norm == "layer_norm": - self.norm_q = nn.LayerNorm(dim_head, eps=eps) - self.norm_k = nn.LayerNorm(dim_head, eps=eps) + self.norm_q = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=layrnorm_elementwise_affine) + self.norm_k = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=layrnorm_elementwise_affine) elif qk_norm == "fp32_layer_norm": self.norm_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) self.norm_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py index c250df29afbe..cddf46cfea77 100644 --- a/src/diffusers/models/embeddings.py +++ b/src/diffusers/models/embeddings.py @@ -714,6 +714,58 @@ def forward(self, ids: torch.Tensor) -> torch.Tensor: return freqs_cos, freqs_sin +class CogView3PlusPatchEmbed(nn.Module): + def __init__( + self, + in_channels: int = 16, + hidden_size: int = 2560, + patch_size: int = 2, + text_hidden_size: int = 4096, + pos_embed_max_size: int = 128, + ): + super().__init__() + self.in_channels = in_channels + self.hidden_size = hidden_size + self.patch_size = patch_size + self.text_hidden_size = text_hidden_size + self.pos_embed_max_size = pos_embed_max_size + # Linear projection for image patches + self.proj = nn.Linear(in_channels * patch_size**2, hidden_size) + + # Linear projection for text embeddings + self.text_proj = nn.Linear(text_hidden_size, hidden_size) + + pos_embed = get_2d_sincos_pos_embed(hidden_size, pos_embed_max_size, base_size=pos_embed_max_size) + pos_embed = pos_embed.reshape(pos_embed_max_size, pos_embed_max_size, hidden_size) + self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float(), persistent=False) + + def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor = None) -> torch.Tensor: + batch_size, channel, height, width = hidden_states.shape + if height % self.patch_size != 0 or width % self.patch_size != 0: + raise ValueError("Height and width must be divisible by patch size") + height = height // self.patch_size + width = width // self.patch_size + hidden_states = hidden_states.view(batch_size, channel, height, self.patch_size, width, self.patch_size) + hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5).contiguous() + hidden_states = hidden_states.view(batch_size, height * width, channel * self.patch_size * self.patch_size) + + # Project the patches + hidden_states = self.proj(hidden_states) + encoder_hidden_states = self.text_proj(encoder_hidden_states) + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + + # Calculate text_length + text_length = encoder_hidden_states.shape[1] + + image_pos_embed = self.pos_embed[:height, :width].reshape(height * width, -1) + text_pos_embed = torch.zeros( + (text_length, self.hidden_size), dtype=image_pos_embed.dtype, device=image_pos_embed.device + ) + pos_embed = torch.cat([text_pos_embed, image_pos_embed], dim=0)[None, ...] + + return (hidden_states + pos_embed).to(hidden_states.dtype) + + class TimestepEmbedding(nn.Module): def __init__( self, @@ -1018,6 +1070,27 @@ def forward(self, image_embeds: torch.Tensor): return self.norm(x) +class CogView3CombineTimestepLabelEmbedding(nn.Module): + def __init__(self, time_embed_dim, label_embed_dim, in_channels=2560): + super().__init__() + + self.time_proj = Timesteps(num_channels=in_channels, flip_sin_to_cos=True, downscale_freq_shift=1) + self.timestep_embedder = TimestepEmbedding(in_channels=in_channels, time_embed_dim=time_embed_dim) + self.label_embedder = nn.Sequential( + nn.Linear(label_embed_dim, time_embed_dim), + nn.SiLU(), + nn.Linear(time_embed_dim, time_embed_dim), + ) + + def forward(self, timestep, class_labels, hidden_dtype=None): + t_proj = self.time_proj(timestep) + t_emb = self.timestep_embedder(t_proj.to(dtype=hidden_dtype)) + label_emb = self.label_embedder(class_labels) + emb = t_emb + label_emb + + return emb + + class CombinedTimestepLabelEmbeddings(nn.Module): def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1): super().__init__() @@ -1038,11 +1111,11 @@ def forward(self, timestep, class_labels, hidden_dtype=None): class CombinedTimestepTextProjEmbeddings(nn.Module): - def __init__(self, embedding_dim, pooled_projection_dim): + def __init__(self, embedding_dim, pooled_projection_dim, timesteps_dim=256): super().__init__() - self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) - self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) + self.time_proj = Timesteps(num_channels=timesteps_dim, flip_sin_to_cos=True, downscale_freq_shift=0) + self.timestep_embedder = TimestepEmbedding(in_channels=timesteps_dim, time_embed_dim=embedding_dim) self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") def forward(self, timestep, pooled_projection): diff --git a/src/diffusers/models/normalization.py b/src/diffusers/models/normalization.py index 5740fed9f30c..21e9d3cd6fc5 100644 --- a/src/diffusers/models/normalization.py +++ b/src/diffusers/models/normalization.py @@ -355,6 +355,51 @@ def forward( return x +class CogView3PlusAdaLayerNormZeroTextImage(nn.Module): + r""" + Norm layer adaptive layer norm zero (adaLN-Zero). + + Parameters: + embedding_dim (`int`): The size of each embedding vector. + num_embeddings (`int`): The size of the embeddings dictionary. + """ + + def __init__(self, embedding_dim: int, dim: int): + super().__init__() + + self.silu = nn.SiLU() + self.linear = nn.Linear(embedding_dim, 12 * dim, bias=True) + self.norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5) + self.norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5) + + def forward( + self, + x: torch.Tensor, + context: torch.Tensor, + emb: Optional[torch.Tensor] = None, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: + emb = self.linear(self.silu(emb)) + ( + shift_msa, + scale_msa, + gate_msa, + shift_mlp, + scale_mlp, + gate_mlp, + c_shift_msa, + c_scale_msa, + c_gate_msa, + c_shift_mlp, + c_scale_mlp, + c_gate_mlp, + ) = emb.chunk(12, dim=1) + normed_x = self.norm_x(x) + normed_context = self.norm_c(context) + x = normed_x * (1 + scale_msa[:, None]) + shift_msa[:, None] + context = normed_context * (1 + c_scale_msa[:, None]) + c_shift_msa[:, None] + return x, gate_msa, shift_mlp, scale_mlp, gate_mlp, context, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp + + class CogVideoXLayerNormZero(nn.Module): def __init__( self, diff --git a/src/diffusers/models/transformers/__init__.py b/src/diffusers/models/transformers/__init__.py index d55dfe57d6f3..58787c079ea8 100644 --- a/src/diffusers/models/transformers/__init__.py +++ b/src/diffusers/models/transformers/__init__.py @@ -14,6 +14,7 @@ from .stable_audio_transformer import StableAudioDiTModel from .t5_film_transformer import T5FilmDecoder from .transformer_2d import Transformer2DModel + from .transformer_cogview3plus import CogView3PlusTransformer2DModel from .transformer_flux import FluxTransformer2DModel from .transformer_sd3 import SD3Transformer2DModel from .transformer_temporal import TransformerTemporalModel diff --git a/src/diffusers/models/transformers/transformer_cogview3plus.py b/src/diffusers/models/transformers/transformer_cogview3plus.py new file mode 100644 index 000000000000..8d7e37f0c925 --- /dev/null +++ b/src/diffusers/models/transformers/transformer_cogview3plus.py @@ -0,0 +1,364 @@ +# Copyright 2024 The CogView team, Tsinghua University & ZhipuAI and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import Any, Dict, Union + +import torch +import torch.nn as nn + +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import FromOriginalModelMixin, PeftAdapterMixin +from ...models.attention import FeedForward +from ...models.attention_processor import Attention, AttentionProcessor, FusedJointAttnProcessor2_0 +from ...models.modeling_utils import ModelMixin +from ...models.normalization import AdaLayerNormContinuous +from ...utils import is_torch_version, logging +from ..embeddings import CogView3PlusPatchEmbed, CombinedTimestepTextProjEmbeddings +from ..modeling_outputs import Transformer2DModelOutput +from ..normalization import CogView3PlusAdaLayerNormZeroTextImage + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +class CogView3PlusTransformerBlock(nn.Module): + """ + Updated CogView3 Transformer Block to align with AdalnAttentionMixin style, simplified with qk_ln always True. + """ + + def __init__( + self, + dim: int = 2560, + num_attention_heads: int = 64, + attention_head_dim: int = 40, + time_embed_dim: int = 512, + ): + super().__init__() + + self.norm1 = CogView3PlusAdaLayerNormZeroTextImage(embedding_dim=time_embed_dim, dim=dim) + + self.attn = Attention( + query_dim=dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + out_dim=dim, + bias=True, + qk_norm="layer_norm", + layrnorm_elementwise_affine=False, + eps=1e-6, + ) + + self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5) + self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5) + + self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") + + def forward( + self, + hidden_states: torch.Tensor, + emb: torch.Tensor, + text_length: int, + ) -> torch.Tensor: + encoder_hidden_states, hidden_states = hidden_states[:, :text_length], hidden_states[:, text_length:] + + # norm1 + ( + norm_hidden_states, + gate_msa, + shift_mlp, + scale_mlp, + gate_mlp, + norm_encoder_hidden_states, + c_gate_msa, + c_shift_mlp, + c_scale_mlp, + c_gate_mlp, + ) = self.norm1(hidden_states, encoder_hidden_states, emb) + + # Attention + attn_input = torch.cat((norm_encoder_hidden_states, norm_hidden_states), dim=1) + attn_output = self.attn(hidden_states=attn_input) + context_attn_output, attn_output = attn_output[:, :text_length], attn_output[:, text_length:] + + attn_output = gate_msa.unsqueeze(1) * attn_output + hidden_states = hidden_states + attn_output + + norm_hidden_states = self.norm2(hidden_states) + norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] + + context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output + encoder_hidden_states = encoder_hidden_states + context_attn_output + norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) + norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] + + norm_hidden_states = torch.cat((norm_encoder_hidden_states, norm_hidden_states), dim=1) + + ff_output = self.ff(norm_hidden_states) + + context_ff_output, ff_output = ff_output[:, :text_length], ff_output[:, text_length:] + + encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output + hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output + hidden_states = torch.cat((encoder_hidden_states, hidden_states), dim=1) + + return hidden_states + + +class CogView3PlusTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): + """ + The Transformer model introduced in CogView3. + + Reference: https://arxiv.org/abs/2403.05121 + """ + + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + sample_size: int = 128, + patch_size: int = 2, + in_channels: int = 16, + num_layers: int = 30, + attention_head_dim: int = 40, + num_attention_heads: int = 64, + out_channels: int = 16, + encoder_hidden_states_dim: int = 4096, + pooled_projection_dim: int = 1536, + pos_embed_max_size: int = 128, + time_embed_dim: int = 512, + ): + super().__init__() + self.out_channels = out_channels + self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim + + self.pos_embed = CogView3PlusPatchEmbed( + in_channels=self.config.in_channels, + hidden_size=self.inner_dim, + patch_size=self.config.patch_size, + text_hidden_size=self.config.encoder_hidden_states_dim, + pos_embed_max_size=self.config.pos_embed_max_size, + ) + + self.time_text_embed = CombinedTimestepTextProjEmbeddings( + embedding_dim=self.config.time_embed_dim, + pooled_projection_dim=self.config.pooled_projection_dim, + timesteps_dim=self.inner_dim, + ) + + self.transformer_blocks = nn.ModuleList( + [ + CogView3PlusTransformerBlock( + dim=self.inner_dim, + num_attention_heads=self.config.num_attention_heads, + attention_head_dim=self.config.attention_head_dim, + time_embed_dim=self.config.time_embed_dim, + ) + for _ in range(self.config.num_layers) + ] + ) + + self.norm_out = AdaLayerNormContinuous( + embedding_dim=self.inner_dim, + conditioning_embedding_dim=self.config.time_embed_dim, + elementwise_affine=False, + eps=1e-6, + ) + self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) + + self.gradient_checkpointing = False + + @property + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors + def attn_processors(self) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, "get_processor"): + processors[f"{name}.processor"] = module.get_processor() + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.attn_processors.keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0 + def fuse_qkv_projections(self): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) + are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + """ + self.original_attn_processors = None + + for _, attn_processor in self.attn_processors.items(): + if "Added" in str(attn_processor.__class__.__name__): + raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") + + self.original_attn_processors = self.attn_processors + + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + + self.set_attn_processor(FusedJointAttnProcessor2_0()) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections + def unfuse_qkv_projections(self): + """Disables the fused QKV projection if enabled. + + + + This API is 🧪 experimental. + + + + """ + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, "gradient_checkpointing"): + module.gradient_checkpointing = value + + def forward( + self, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + pooled_projections: torch.FloatTensor = None, + timestep: torch.LongTensor = None, + return_dict: bool = True, + ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: + """ + The [`CogView3PlusTransformer2DModel`] forward method. + + Args: + hidden_states (`torch.FloatTensor`): Input `hidden_states`. + timestep (`torch.LongTensor`): Indicates denoising step. + y (`torch.LongTensor`, *optional*): 标签输入,用于获取标签嵌入。 + block_controlnet_hidden_states: (`list` of `torch.Tensor`): A list of tensors for residuals. + joint_attention_kwargs (`dict`, *optional*): Additional kwargs for the attention processor. + return_dict (`bool`, *optional*, defaults to `True`): Whether to return a `Transformer2DModelOutput`. + + Returns: + Output tensor or `Transformer2DModelOutput`. + """ + + height, width = hidden_states.shape[-2:] + text_length = encoder_hidden_states.shape[1] + + hidden_states = self.pos_embed( + hidden_states, encoder_hidden_states + ) # takes care of adding positional embeddings too. + emb = self.time_text_embed(timestep, pooled_projections) + + for index_block, block in enumerate(self.transformer_blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + emb, + text_length, + **ckpt_kwargs, + ) + else: + hidden_states = block( + hidden_states=hidden_states, + emb=emb, + text_length=text_length, + ) + + hidden_states = hidden_states[:, text_length:] + hidden_states = self.norm_out(hidden_states, emb) + hidden_states = self.proj_out(hidden_states) # (batch_size, height*width, patch_size*patch_size*out_channels) + # unpatchify + patch_size = self.config.patch_size + height = height // patch_size + width = width // patch_size + + hidden_states = hidden_states.reshape( + shape=(hidden_states.shape[0], height, width, self.out_channels, patch_size, patch_size) + ) + hidden_states = torch.einsum("nhwcpq->nchpwq", hidden_states) + output = hidden_states.reshape( + shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) + ) + + if not return_dict: + return (output,) + + return Transformer2DModelOutput(sample=output) diff --git a/src/diffusers/pipelines/__init__.py b/src/diffusers/pipelines/__init__.py index 3b6cde17c8a3..7ff219efdf5f 100644 --- a/src/diffusers/pipelines/__init__.py +++ b/src/diffusers/pipelines/__init__.py @@ -145,6 +145,9 @@ "CogVideoXImageToVideoPipeline", "CogVideoXVideoToVideoPipeline", ] + _import_structure["cogview3"] = [ + "CogView3PlusPipeline", + ] _import_structure["controlnet"].extend( [ "BlipDiffusionControlNetPipeline", @@ -469,6 +472,7 @@ from .aura_flow import AuraFlowPipeline from .blip_diffusion import BlipDiffusionPipeline from .cogvideo import CogVideoXImageToVideoPipeline, CogVideoXPipeline, CogVideoXVideoToVideoPipeline + from .cogview3 import CogView3PlusPipeline from .controlnet import ( BlipDiffusionControlNetPipeline, StableDiffusionControlNetImg2ImgPipeline, diff --git a/src/diffusers/pipelines/auto_pipeline.py b/src/diffusers/pipelines/auto_pipeline.py index e3e78d0663fa..1dc1711dce0b 100644 --- a/src/diffusers/pipelines/auto_pipeline.py +++ b/src/diffusers/pipelines/auto_pipeline.py @@ -20,6 +20,7 @@ from ..configuration_utils import ConfigMixin from ..utils import is_sentencepiece_available from .aura_flow import AuraFlowPipeline +from .cogview3 import CogView3PlusPipeline from .controlnet import ( StableDiffusionControlNetImg2ImgPipeline, StableDiffusionControlNetInpaintPipeline, @@ -118,6 +119,7 @@ ("flux", FluxPipeline), ("flux-controlnet", FluxControlNetPipeline), ("lumina", LuminaText2ImgPipeline), + ("cogview3", CogView3PlusPipeline), ] ) diff --git a/src/diffusers/pipelines/cogview3/__init__.py b/src/diffusers/pipelines/cogview3/__init__.py new file mode 100644 index 000000000000..50895251ba0b --- /dev/null +++ b/src/diffusers/pipelines/cogview3/__init__.py @@ -0,0 +1,47 @@ +from typing import TYPE_CHECKING + +from ...utils import ( + DIFFUSERS_SLOW_IMPORT, + OptionalDependencyNotAvailable, + _LazyModule, + get_objects_from_module, + is_torch_available, + is_transformers_available, +) + + +_dummy_objects = {} +_additional_imports = {} +_import_structure = {"pipeline_output": ["CogView3PlusPipelineOutput"]} + +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects # noqa F403 + + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure["pipeline_cogview3plus"] = ["CogView3PlusPipeline"] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 + else: + from .pipeline_cogview3plus import CogView3PlusPipeline +else: + import sys + + sys.modules[__name__] = _LazyModule( + __name__, + globals()["__file__"], + _import_structure, + module_spec=__spec__, + ) + + for name, value in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + for name, value in _additional_imports.items(): + setattr(sys.modules[__name__], name, value) diff --git a/src/diffusers/pipelines/cogview3/pipeline_cogview3plus.py b/src/diffusers/pipelines/cogview3/pipeline_cogview3plus.py new file mode 100644 index 000000000000..3413fcda9e85 --- /dev/null +++ b/src/diffusers/pipelines/cogview3/pipeline_cogview3plus.py @@ -0,0 +1,707 @@ +# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +from typing import Any, Callable, Dict, List, Optional, Union + +import numpy as np +import torch +from transformers import T5EncoderModel, T5TokenizerFast + +from ...image_processor import VaeImageProcessor +from ...loaders import FromOriginalModelMixin, PeftAdapterMixin +from ...models.autoencoders import AutoencoderKL +from ...models.transformers.transformer_cogview3plus import CogView3PlusTransformer2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import ( + USE_PEFT_BACKEND, + is_torch_xla_available, + logging, + replace_example_docstring, + scale_lora_layers, + unscale_lora_layers, +) +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import CogView3PipelineOutput + + +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from diffusers import CogView3PlusPipeline + + >>> pipe = CogView3PlusPipeline.from_pretrained("THUDM/CogView3-Plus-3B", torch_dtype=torch.bfloat16) + >>> pipe.to("cuda") + >>> prompt = "A cat holding a sign that says hello world" + >>> # Depending on the variant being used, the pipeline call will slightly vary. + >>> # Refer to the pipeline documentation for more details. + >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0] + >>> image.save("cat.png") + ``` +""" + + +def calculate_shift( + image_seq_len, + base_seq_len: int = 256, + max_seq_len: int = 4096, + base_shift: float = 0.5, + max_shift: float = 1.16, +): + m = (max_shift - base_shift) / (max_seq_len - base_seq_len) + b = base_shift - m * base_seq_len + mu = image_seq_len * m + b + return mu + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, + `num_inference_steps` and `sigmas` must be `None`. + sigmas (`List[float]`, *optional*): + Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, + `num_inference_steps` and `timesteps` must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None and sigmas is not None: + raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" sigmas schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class CogView3PlusPipeline(DiffusionPipeline, PeftAdapterMixin, FromOriginalModelMixin): + r""" + The CogView3 pipeline for text-to-image generation. + + Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ + + Args: + transformer ([`CogView3PlusTransformerBlock`]): + Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. + scheduler ([`FlowMatchEulerDiscreteScheduler`]): + A scheduler to be used in combination with `transformer` to denoise the encoded image latents. + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`T5EncoderModel`]): + [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically + the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. + tokenizer (`T5TokenizerFast`): + Second Tokenizer of class + [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). + """ + + model_cpu_offload_seq = "text_encoder->transformer->vae" + _optional_components = [] + _callback_tensor_inputs = ["latents", "prompt_embeds"] + + def __init__( + self, + scheduler: FlowMatchEulerDiscreteScheduler, + vae: AutoencoderKL, + text_encoder: T5EncoderModel, + tokenizer: T5TokenizerFast, + transformer: CogView3PlusTransformer2DModel, + ): + super().__init__() + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + transformer=transformer, + scheduler=scheduler, + ) + self.vae_scale_factor = ( + 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16 + ) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.tokenizer_max_length = ( + self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 + ) + self.default_sample_size = 64 + + def _get_t5_prompt_embeds( + self, + prompt: Union[str, List[str]] = None, + num_images_per_prompt: int = 1, + max_sequence_length: int = 256, + device: Optional[torch.device] = None, + dtype: Optional[torch.dtype] = None, + ): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=max_sequence_length, + truncation=True, + return_length=False, + return_overflowing_tokens=False, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because `max_sequence_length` is set to " + f" {max_sequence_length} tokens: {removed_text}" + ) + + prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)[0].to( + dtype=dtype, device=device + ) + + _, seq_len, _ = prompt_embeds.shape + + # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + return prompt_embeds + + def encode_prompt( + self, + prompt: Union[str, List[str]], + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + max_sequence_length: int = 512, + lora_scale: Optional[float] = None, + ): + r""" + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + device = device or self._execution_device + + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, PeftAdapterMixin): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + + prompt = [prompt] if isinstance(prompt, str) else prompt + + if prompt_embeds is None: + prompt_embeds = self._get_t5_prompt_embeds( + prompt=prompt, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + device=device, + ) + + if self.text_encoder is not None: + if isinstance(self, PeftAdapterMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype + text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) + + return prompt_embeds, pooled_prompt_embeds, text_ids + + def check_inputs( + self, + prompt, + height, + width, + prompt_embeds=None, + pooled_prompt_embeds=None, + callback_on_step_end_tensor_inputs=None, + max_sequence_length=None, + ): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError( + "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." + ) + + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") + + @staticmethod + def _prepare_latent_image_ids(batch_size, height, width, device, dtype): + latent_image_ids = torch.zeros(height // 2, width // 2, 3) + latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] + latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] + + latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape + + latent_image_ids = latent_image_ids.reshape( + latent_image_id_height * latent_image_id_width, latent_image_id_channels + ) + + return latent_image_ids.to(device=device, dtype=dtype) + + @staticmethod + def _pack_latents(latents, batch_size, num_channels_latents, height, width): + latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) + latents = latents.permute(0, 2, 4, 1, 3, 5) + latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) + + return latents + + @staticmethod + def _unpack_latents(latents, height, width, vae_scale_factor): + batch_size, num_patches, channels = latents.shape + + height = height // vae_scale_factor + width = width // vae_scale_factor + + latents = latents.view(batch_size, height, width, channels // 4, 2, 2) + latents = latents.permute(0, 3, 1, 4, 2, 5) + + latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2) + + return latents + + def enable_vae_slicing(self): + r""" + Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to + compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. + """ + self.vae.enable_slicing() + + def disable_vae_slicing(self): + r""" + Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_slicing() + + def enable_vae_tiling(self): + r""" + Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to + compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow + processing larger images. + """ + self.vae.enable_tiling() + + def disable_vae_tiling(self): + r""" + Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_tiling() + + def prepare_latents( + self, + batch_size, + num_channels_latents, + height, + width, + dtype, + device, + generator, + latents=None, + ): + height = 2 * (int(height) // self.vae_scale_factor) + width = 2 * (int(width) // self.vae_scale_factor) + + shape = (batch_size, num_channels_latents, height, width) + + if latents is not None: + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + return latents.to(device=device, dtype=dtype), latent_image_ids + + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) + + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + + return latents, latent_image_ids + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 28, + timesteps: List[int] = None, + guidance_scale: float = 3.5, + num_images_per_prompt: Optional[int] = 1, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + max_sequence_length: int = 512, + ): + r""" + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + will be used instead + prompt_3 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is + will be used instead + height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The height in pixels of the generated image. This is set to 1024 by default for the best results. + width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The width in pixels of the generated image. This is set to 1024 by default for the best results. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument + in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is + passed will be used. Must be in descending order. + guidance_scale (`float`, *optional*, defaults to 7.0): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + negative_prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and + `text_encoder_2`. If not defined, `negative_prompt` is used instead + negative_prompt_3 (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and + `text_encoder_3`. If not defined, `negative_prompt` is used instead + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` + input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead + of a plain tuple. + joint_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising steps during the inference. The function is called + with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, + callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by + `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeline class. + max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`. + + Examples: + + Returns: + [`~pipelines.cogview3.CogView3PlusPipelineOutput`] or `tuple`: + [`~pipelines.cogview3.CogView3PlusPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When + returning a tuple, the first element is a list with the generated images. + """ + + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + height, + width, + prompt_embeds=prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, + max_sequence_length=max_sequence_length, + ) + + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + lora_scale = ( + self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None + ) + ( + prompt_embeds, + pooled_prompt_embeds, + text_ids, + ) = self.encode_prompt( + prompt=prompt, + prompt_embeds=prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + lora_scale=lora_scale, + ) + + # 4. Prepare latent variables + num_channels_latents = self.transformer.config.in_channels // 4 + latents, latent_image_ids = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 5. Prepare timesteps + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) + image_seq_len = latents.shape[1] + mu = calculate_shift( + image_seq_len, + self.scheduler.config.base_image_seq_len, + self.scheduler.config.max_image_seq_len, + self.scheduler.config.base_shift, + self.scheduler.config.max_shift, + ) + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, + num_inference_steps, + device, + timesteps, + sigmas, + mu=mu, + ) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + + # handle guidance + if self.transformer.config.guidance_embeds: + guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) + guidance = guidance.expand(latents.shape[0]) + else: + guidance = None + + # 6. Denoising loop + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + if self.interrupt: + continue + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timestep = t.expand(latents.shape[0]).to(latents.dtype) + + noise_pred = self.transformer( + hidden_states=latents, + timestep=timestep / 1000, + guidance=guidance, + pooled_projections=pooled_prompt_embeds, + encoder_hidden_states=prompt_embeds, + txt_ids=text_ids, + img_ids=latent_image_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False, + )[0] + + # compute the previous noisy sample x_t -> x_t-1 + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 + latents = latents.to(latents_dtype) + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + + if XLA_AVAILABLE: + xm.mark_step() + + if output_type == "latent": + image = latents + + else: + latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) + latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return CogView3PipelineOutput(images=image) diff --git a/src/diffusers/pipelines/cogview3/pipeline_output.py b/src/diffusers/pipelines/cogview3/pipeline_output.py new file mode 100644 index 000000000000..3891dd51e691 --- /dev/null +++ b/src/diffusers/pipelines/cogview3/pipeline_output.py @@ -0,0 +1,21 @@ +from dataclasses import dataclass +from typing import List, Union + +import numpy as np +import PIL.Image + +from ...utils import BaseOutput + + +@dataclass +class CogView3PipelineOutput(BaseOutput): + """ + Output class for CogView3 pipelines. + + Args: + images (`List[PIL.Image.Image]` or `np.ndarray`) + List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, + num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. + """ + + images: Union[List[PIL.Image.Image], np.ndarray] diff --git a/src/diffusers/utils/dummy_torch_and_transformers_objects.py b/src/diffusers/utils/dummy_torch_and_transformers_objects.py index 1927fc8cd4d3..69ce91da0f25 100644 --- a/src/diffusers/utils/dummy_torch_and_transformers_objects.py +++ b/src/diffusers/utils/dummy_torch_and_transformers_objects.py @@ -422,6 +422,21 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) +class CogView3PlusPipeline(metaclass=DummyObject): + _backends = ["torch", "transformers"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch", "transformers"]) + + @classmethod + def from_config(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + @classmethod + def from_pretrained(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + class HunyuanDiTControlNetPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"]