diff --git a/scripts/convert_cogview3_to_diffusers.py b/scripts/convert_cogview3_to_diffusers.py
new file mode 100644
index 000000000000..0af757969293
--- /dev/null
+++ b/scripts/convert_cogview3_to_diffusers.py
@@ -0,0 +1,183 @@
+"""
+Convert a CogView3 checkpoint to the Diffusers format.
+
+This script converts a CogView3 checkpoint to the Diffusers format, which can then be used
+with the Diffusers library.
+
+Example usage:
+ python scripts/convert_cogview3_to_diffusers.py \
+ --original_state_dict_repo_id "THUDM/cogview3" \
+ --filename "cogview3.pt" \
+ --transformer \
+ --output_path "./cogview3_diffusers" \
+ --dtype "bf16"
+
+Alternatively, if you have a local checkpoint:
+ python scripts/convert_cogview3_to_diffusers.py \
+ --checkpoint_path '/raid/.cache/huggingface/models--ZP2HF--CogView3-SAT/snapshots/ca86ce9ba94f9a7f2dd109e7a59e4c8ad04121be/cogview3plus_3b/1/mp_rank_00_model_states.pt' \
+ --transformer \
+ --output_path "/raid/yiyi/cogview3_diffusers" \
+ --dtype "bf16"
+
+Arguments:
+ --original_state_dict_repo_id: The Hugging Face repo ID containing the original checkpoint.
+ --filename: The filename of the checkpoint in the repo (default: "flux.safetensors").
+ --checkpoint_path: Path to a local checkpoint file (alternative to repo_id and filename).
+ --transformer: Flag to convert the transformer model.
+ --output_path: The path to save the converted model.
+ --dtype: The dtype to save the model in (default: "bf16", options: "fp16", "bf16", "fp32").
+
+Note: You must provide either --original_state_dict_repo_id or --checkpoint_path.
+"""
+
+import argparse
+from contextlib import nullcontext
+
+import torch
+from accelerate import init_empty_weights
+from huggingface_hub import hf_hub_download
+
+from diffusers import CogView3PlusTransformer2DModel
+from diffusers.utils.import_utils import is_accelerate_available
+
+
+CTX = init_empty_weights if is_accelerate_available else nullcontext
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--original_state_dict_repo_id", default=None, type=str)
+parser.add_argument("--filename", default="flux.safetensors", type=str)
+parser.add_argument("--checkpoint_path", default=None, type=str)
+parser.add_argument("--transformer", action="store_true")
+parser.add_argument("--output_path", type=str)
+parser.add_argument("--dtype", type=str, default="bf16")
+
+args = parser.parse_args()
+
+
+def load_original_checkpoint(args):
+ if args.original_state_dict_repo_id is not None:
+ ckpt_path = hf_hub_download(repo_id=args.original_state_dict_repo_id, filename=args.filename)
+ elif args.checkpoint_path is not None:
+ ckpt_path = args.checkpoint_path
+ else:
+ raise ValueError("Please provide either `original_state_dict_repo_id` or a local `checkpoint_path`")
+
+ original_state_dict = torch.load(ckpt_path, map_location="cpu")
+ return original_state_dict
+
+
+# this is specific to `AdaLayerNormContinuous`:
+# diffusers imnplementation split the linear projection into the scale, shift while CogView3 split it tino shift, scale
+def swap_scale_shift(weight, dim):
+ shift, scale = weight.chunk(2, dim=0)
+ new_weight = torch.cat([scale, shift], dim=0)
+ return new_weight
+
+
+def convert_cogview3_transformer_checkpoint_to_diffusers(original_state_dict):
+ new_state_dict = {}
+
+ # Convert pos_embed
+ new_state_dict["pos_embed.proj.weight"] = original_state_dict.pop("mixins.patch_embed.proj.weight")
+ new_state_dict["pos_embed.proj.bias"] = original_state_dict.pop("mixins.patch_embed.proj.bias")
+ new_state_dict["pos_embed.text_proj.weight"] = original_state_dict.pop("mixins.patch_embed.text_proj.weight")
+ new_state_dict["pos_embed.text_proj.bias"] = original_state_dict.pop("mixins.patch_embed.text_proj.bias")
+
+ # Convert time_text_embed
+ new_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop(
+ "time_embed.0.weight"
+ )
+ new_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop("time_embed.0.bias")
+ new_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop(
+ "time_embed.2.weight"
+ )
+ new_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop("time_embed.2.bias")
+ new_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop("label_emb.0.0.weight")
+ new_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop("label_emb.0.0.bias")
+ new_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop("label_emb.0.2.weight")
+ new_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop("label_emb.0.2.bias")
+
+ # Convert transformer blocks
+ for i in range(30):
+ block_prefix = f"transformer_blocks.{i}."
+ old_prefix = f"transformer.layers.{i}."
+ adaln_prefix = f"mixins.adaln.adaln_modules.{i}."
+
+ new_state_dict[block_prefix + "norm1.linear.weight"] = original_state_dict.pop(adaln_prefix + "1.weight")
+ new_state_dict[block_prefix + "norm1.linear.bias"] = original_state_dict.pop(adaln_prefix + "1.bias")
+
+ qkv_weight = original_state_dict.pop(old_prefix + "attention.query_key_value.weight")
+ qkv_bias = original_state_dict.pop(old_prefix + "attention.query_key_value.bias")
+ q, k, v = qkv_weight.chunk(3, dim=0)
+ q_bias, k_bias, v_bias = qkv_bias.chunk(3, dim=0)
+
+ new_state_dict[block_prefix + "attn.to_q.weight"] = q
+ new_state_dict[block_prefix + "attn.to_q.bias"] = q_bias
+ new_state_dict[block_prefix + "attn.to_k.weight"] = k
+ new_state_dict[block_prefix + "attn.to_k.bias"] = k_bias
+ new_state_dict[block_prefix + "attn.to_v.weight"] = v
+ new_state_dict[block_prefix + "attn.to_v.bias"] = v_bias
+
+ new_state_dict[block_prefix + "attn.to_out.0.weight"] = original_state_dict.pop(
+ old_prefix + "attention.dense.weight"
+ )
+ new_state_dict[block_prefix + "attn.to_out.0.bias"] = original_state_dict.pop(
+ old_prefix + "attention.dense.bias"
+ )
+
+ new_state_dict[block_prefix + "ff.net.0.proj.weight"] = original_state_dict.pop(
+ old_prefix + "mlp.dense_h_to_4h.weight"
+ )
+ new_state_dict[block_prefix + "ff.net.0.proj.bias"] = original_state_dict.pop(
+ old_prefix + "mlp.dense_h_to_4h.bias"
+ )
+ new_state_dict[block_prefix + "ff.net.2.weight"] = original_state_dict.pop(
+ old_prefix + "mlp.dense_4h_to_h.weight"
+ )
+ new_state_dict[block_prefix + "ff.net.2.bias"] = original_state_dict.pop(old_prefix + "mlp.dense_4h_to_h.bias")
+
+ # Convert final norm and projection
+ new_state_dict["norm_out.linear.weight"] = swap_scale_shift(
+ original_state_dict.pop("mixins.final_layer.adaln.1.weight"), dim=0
+ )
+ new_state_dict["norm_out.linear.bias"] = swap_scale_shift(
+ original_state_dict.pop("mixins.final_layer.adaln.1.bias"), dim=0
+ )
+ new_state_dict["proj_out.weight"] = original_state_dict.pop("mixins.final_layer.linear.weight")
+ new_state_dict["proj_out.bias"] = original_state_dict.pop("mixins.final_layer.linear.bias")
+
+ return new_state_dict
+
+
+def main(args):
+ original_ckpt = load_original_checkpoint(args)
+ original_ckpt = original_ckpt["module"]
+ original_ckpt = {k.replace("model.diffusion_model.", ""): v for k, v in original_ckpt.items()}
+
+ original_dtype = next(iter(original_ckpt.values())).dtype
+ dtype = None
+ if args.dtype is None:
+ dtype = original_dtype
+ elif args.dtype == "fp16":
+ dtype = torch.float16
+ elif args.dtype == "bf16":
+ dtype = torch.bfloat16
+ elif args.dtype == "fp32":
+ dtype = torch.float32
+ else:
+ raise ValueError(f"Unsupported dtype: {args.dtype}")
+
+ if args.transformer:
+ converted_transformer_state_dict = convert_cogview3_transformer_checkpoint_to_diffusers(original_ckpt)
+ transformer = CogView3PlusTransformer2DModel()
+ transformer.load_state_dict(converted_transformer_state_dict, strict=True)
+
+ print(f"Saving CogView3 Transformer in Diffusers format in {args.output_path}/transformer")
+ transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer")
+
+ if len(original_ckpt) > 0:
+ print(f"Warning: {len(original_ckpt)} keys were not converted and will be saved as is: {original_ckpt.keys()}")
+
+
+if __name__ == "__main__":
+ main(args)
diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py
index 4214a4699ec8..978e7047e666 100644
--- a/src/diffusers/__init__.py
+++ b/src/diffusers/__init__.py
@@ -84,6 +84,7 @@
"AutoencoderOobleck",
"AutoencoderTiny",
"CogVideoXTransformer3DModel",
+ "CogView3PlusTransformer2DModel",
"ConsistencyDecoderVAE",
"ControlNetModel",
"ControlNetXSAdapter",
@@ -258,6 +259,7 @@
"CogVideoXImageToVideoPipeline",
"CogVideoXPipeline",
"CogVideoXVideoToVideoPipeline",
+ "CogView3PlusPipeline",
"CycleDiffusionPipeline",
"FluxControlNetImg2ImgPipeline",
"FluxControlNetInpaintPipeline",
@@ -558,6 +560,7 @@
AutoencoderOobleck,
AutoencoderTiny,
CogVideoXTransformer3DModel,
+ CogView3PlusTransformer2DModel,
ConsistencyDecoderVAE,
ControlNetModel,
ControlNetXSAdapter,
@@ -710,6 +713,7 @@
CogVideoXImageToVideoPipeline,
CogVideoXPipeline,
CogVideoXVideoToVideoPipeline,
+ CogView3PlusPipeline,
CycleDiffusionPipeline,
FluxControlNetImg2ImgPipeline,
FluxControlNetInpaintPipeline,
diff --git a/src/diffusers/models/__init__.py b/src/diffusers/models/__init__.py
index f0dd7248c117..4dda8c36ba1c 100644
--- a/src/diffusers/models/__init__.py
+++ b/src/diffusers/models/__init__.py
@@ -54,6 +54,7 @@
_import_structure["transformers.stable_audio_transformer"] = ["StableAudioDiTModel"]
_import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"]
_import_structure["transformers.transformer_2d"] = ["Transformer2DModel"]
+ _import_structure["transformers.transformer_cogview3plus"] = ["CogView3PlusTransformer2DModel"]
_import_structure["transformers.transformer_flux"] = ["FluxTransformer2DModel"]
_import_structure["transformers.transformer_sd3"] = ["SD3Transformer2DModel"]
_import_structure["transformers.transformer_temporal"] = ["TransformerTemporalModel"]
@@ -98,6 +99,7 @@
from .transformers import (
AuraFlowTransformer2DModel,
CogVideoXTransformer3DModel,
+ CogView3PlusTransformer2DModel,
DiTTransformer2DModel,
DualTransformer2DModel,
FluxTransformer2DModel,
diff --git a/src/diffusers/models/attention_processor.py b/src/diffusers/models/attention_processor.py
index 9f9bc5a46e10..2ef3c6a80830 100644
--- a/src/diffusers/models/attention_processor.py
+++ b/src/diffusers/models/attention_processor.py
@@ -122,6 +122,7 @@ def __init__(
out_dim: int = None,
context_pre_only=None,
pre_only=False,
+ layrnorm_elementwise_affine: bool = True,
):
super().__init__()
@@ -179,8 +180,8 @@ def __init__(
self.norm_q = None
self.norm_k = None
elif qk_norm == "layer_norm":
- self.norm_q = nn.LayerNorm(dim_head, eps=eps)
- self.norm_k = nn.LayerNorm(dim_head, eps=eps)
+ self.norm_q = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=layrnorm_elementwise_affine)
+ self.norm_k = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=layrnorm_elementwise_affine)
elif qk_norm == "fp32_layer_norm":
self.norm_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
self.norm_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py
index c250df29afbe..cddf46cfea77 100644
--- a/src/diffusers/models/embeddings.py
+++ b/src/diffusers/models/embeddings.py
@@ -714,6 +714,58 @@ def forward(self, ids: torch.Tensor) -> torch.Tensor:
return freqs_cos, freqs_sin
+class CogView3PlusPatchEmbed(nn.Module):
+ def __init__(
+ self,
+ in_channels: int = 16,
+ hidden_size: int = 2560,
+ patch_size: int = 2,
+ text_hidden_size: int = 4096,
+ pos_embed_max_size: int = 128,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.hidden_size = hidden_size
+ self.patch_size = patch_size
+ self.text_hidden_size = text_hidden_size
+ self.pos_embed_max_size = pos_embed_max_size
+ # Linear projection for image patches
+ self.proj = nn.Linear(in_channels * patch_size**2, hidden_size)
+
+ # Linear projection for text embeddings
+ self.text_proj = nn.Linear(text_hidden_size, hidden_size)
+
+ pos_embed = get_2d_sincos_pos_embed(hidden_size, pos_embed_max_size, base_size=pos_embed_max_size)
+ pos_embed = pos_embed.reshape(pos_embed_max_size, pos_embed_max_size, hidden_size)
+ self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float(), persistent=False)
+
+ def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor = None) -> torch.Tensor:
+ batch_size, channel, height, width = hidden_states.shape
+ if height % self.patch_size != 0 or width % self.patch_size != 0:
+ raise ValueError("Height and width must be divisible by patch size")
+ height = height // self.patch_size
+ width = width // self.patch_size
+ hidden_states = hidden_states.view(batch_size, channel, height, self.patch_size, width, self.patch_size)
+ hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5).contiguous()
+ hidden_states = hidden_states.view(batch_size, height * width, channel * self.patch_size * self.patch_size)
+
+ # Project the patches
+ hidden_states = self.proj(hidden_states)
+ encoder_hidden_states = self.text_proj(encoder_hidden_states)
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
+
+ # Calculate text_length
+ text_length = encoder_hidden_states.shape[1]
+
+ image_pos_embed = self.pos_embed[:height, :width].reshape(height * width, -1)
+ text_pos_embed = torch.zeros(
+ (text_length, self.hidden_size), dtype=image_pos_embed.dtype, device=image_pos_embed.device
+ )
+ pos_embed = torch.cat([text_pos_embed, image_pos_embed], dim=0)[None, ...]
+
+ return (hidden_states + pos_embed).to(hidden_states.dtype)
+
+
class TimestepEmbedding(nn.Module):
def __init__(
self,
@@ -1018,6 +1070,27 @@ def forward(self, image_embeds: torch.Tensor):
return self.norm(x)
+class CogView3CombineTimestepLabelEmbedding(nn.Module):
+ def __init__(self, time_embed_dim, label_embed_dim, in_channels=2560):
+ super().__init__()
+
+ self.time_proj = Timesteps(num_channels=in_channels, flip_sin_to_cos=True, downscale_freq_shift=1)
+ self.timestep_embedder = TimestepEmbedding(in_channels=in_channels, time_embed_dim=time_embed_dim)
+ self.label_embedder = nn.Sequential(
+ nn.Linear(label_embed_dim, time_embed_dim),
+ nn.SiLU(),
+ nn.Linear(time_embed_dim, time_embed_dim),
+ )
+
+ def forward(self, timestep, class_labels, hidden_dtype=None):
+ t_proj = self.time_proj(timestep)
+ t_emb = self.timestep_embedder(t_proj.to(dtype=hidden_dtype))
+ label_emb = self.label_embedder(class_labels)
+ emb = t_emb + label_emb
+
+ return emb
+
+
class CombinedTimestepLabelEmbeddings(nn.Module):
def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
super().__init__()
@@ -1038,11 +1111,11 @@ def forward(self, timestep, class_labels, hidden_dtype=None):
class CombinedTimestepTextProjEmbeddings(nn.Module):
- def __init__(self, embedding_dim, pooled_projection_dim):
+ def __init__(self, embedding_dim, pooled_projection_dim, timesteps_dim=256):
super().__init__()
- self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
- self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
+ self.time_proj = Timesteps(num_channels=timesteps_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
+ self.timestep_embedder = TimestepEmbedding(in_channels=timesteps_dim, time_embed_dim=embedding_dim)
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
def forward(self, timestep, pooled_projection):
diff --git a/src/diffusers/models/normalization.py b/src/diffusers/models/normalization.py
index 5740fed9f30c..21e9d3cd6fc5 100644
--- a/src/diffusers/models/normalization.py
+++ b/src/diffusers/models/normalization.py
@@ -355,6 +355,51 @@ def forward(
return x
+class CogView3PlusAdaLayerNormZeroTextImage(nn.Module):
+ r"""
+ Norm layer adaptive layer norm zero (adaLN-Zero).
+
+ Parameters:
+ embedding_dim (`int`): The size of each embedding vector.
+ num_embeddings (`int`): The size of the embeddings dictionary.
+ """
+
+ def __init__(self, embedding_dim: int, dim: int):
+ super().__init__()
+
+ self.silu = nn.SiLU()
+ self.linear = nn.Linear(embedding_dim, 12 * dim, bias=True)
+ self.norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
+ self.norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ context: torch.Tensor,
+ emb: Optional[torch.Tensor] = None,
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
+ emb = self.linear(self.silu(emb))
+ (
+ shift_msa,
+ scale_msa,
+ gate_msa,
+ shift_mlp,
+ scale_mlp,
+ gate_mlp,
+ c_shift_msa,
+ c_scale_msa,
+ c_gate_msa,
+ c_shift_mlp,
+ c_scale_mlp,
+ c_gate_mlp,
+ ) = emb.chunk(12, dim=1)
+ normed_x = self.norm_x(x)
+ normed_context = self.norm_c(context)
+ x = normed_x * (1 + scale_msa[:, None]) + shift_msa[:, None]
+ context = normed_context * (1 + c_scale_msa[:, None]) + c_shift_msa[:, None]
+ return x, gate_msa, shift_mlp, scale_mlp, gate_mlp, context, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp
+
+
class CogVideoXLayerNormZero(nn.Module):
def __init__(
self,
diff --git a/src/diffusers/models/transformers/__init__.py b/src/diffusers/models/transformers/__init__.py
index d55dfe57d6f3..58787c079ea8 100644
--- a/src/diffusers/models/transformers/__init__.py
+++ b/src/diffusers/models/transformers/__init__.py
@@ -14,6 +14,7 @@
from .stable_audio_transformer import StableAudioDiTModel
from .t5_film_transformer import T5FilmDecoder
from .transformer_2d import Transformer2DModel
+ from .transformer_cogview3plus import CogView3PlusTransformer2DModel
from .transformer_flux import FluxTransformer2DModel
from .transformer_sd3 import SD3Transformer2DModel
from .transformer_temporal import TransformerTemporalModel
diff --git a/src/diffusers/models/transformers/transformer_cogview3plus.py b/src/diffusers/models/transformers/transformer_cogview3plus.py
new file mode 100644
index 000000000000..8d7e37f0c925
--- /dev/null
+++ b/src/diffusers/models/transformers/transformer_cogview3plus.py
@@ -0,0 +1,364 @@
+# Copyright 2024 The CogView team, Tsinghua University & ZhipuAI and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+from typing import Any, Dict, Union
+
+import torch
+import torch.nn as nn
+
+from ...configuration_utils import ConfigMixin, register_to_config
+from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
+from ...models.attention import FeedForward
+from ...models.attention_processor import Attention, AttentionProcessor, FusedJointAttnProcessor2_0
+from ...models.modeling_utils import ModelMixin
+from ...models.normalization import AdaLayerNormContinuous
+from ...utils import is_torch_version, logging
+from ..embeddings import CogView3PlusPatchEmbed, CombinedTimestepTextProjEmbeddings
+from ..modeling_outputs import Transformer2DModelOutput
+from ..normalization import CogView3PlusAdaLayerNormZeroTextImage
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class CogView3PlusTransformerBlock(nn.Module):
+ """
+ Updated CogView3 Transformer Block to align with AdalnAttentionMixin style, simplified with qk_ln always True.
+ """
+
+ def __init__(
+ self,
+ dim: int = 2560,
+ num_attention_heads: int = 64,
+ attention_head_dim: int = 40,
+ time_embed_dim: int = 512,
+ ):
+ super().__init__()
+
+ self.norm1 = CogView3PlusAdaLayerNormZeroTextImage(embedding_dim=time_embed_dim, dim=dim)
+
+ self.attn = Attention(
+ query_dim=dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ out_dim=dim,
+ bias=True,
+ qk_norm="layer_norm",
+ layrnorm_elementwise_affine=False,
+ eps=1e-6,
+ )
+
+ self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
+ self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
+
+ self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ emb: torch.Tensor,
+ text_length: int,
+ ) -> torch.Tensor:
+ encoder_hidden_states, hidden_states = hidden_states[:, :text_length], hidden_states[:, text_length:]
+
+ # norm1
+ (
+ norm_hidden_states,
+ gate_msa,
+ shift_mlp,
+ scale_mlp,
+ gate_mlp,
+ norm_encoder_hidden_states,
+ c_gate_msa,
+ c_shift_mlp,
+ c_scale_mlp,
+ c_gate_mlp,
+ ) = self.norm1(hidden_states, encoder_hidden_states, emb)
+
+ # Attention
+ attn_input = torch.cat((norm_encoder_hidden_states, norm_hidden_states), dim=1)
+ attn_output = self.attn(hidden_states=attn_input)
+ context_attn_output, attn_output = attn_output[:, :text_length], attn_output[:, text_length:]
+
+ attn_output = gate_msa.unsqueeze(1) * attn_output
+ hidden_states = hidden_states + attn_output
+
+ norm_hidden_states = self.norm2(hidden_states)
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
+
+ context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
+ encoder_hidden_states = encoder_hidden_states + context_attn_output
+ norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
+ norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
+
+ norm_hidden_states = torch.cat((norm_encoder_hidden_states, norm_hidden_states), dim=1)
+
+ ff_output = self.ff(norm_hidden_states)
+
+ context_ff_output, ff_output = ff_output[:, :text_length], ff_output[:, text_length:]
+
+ encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
+ hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output
+ hidden_states = torch.cat((encoder_hidden_states, hidden_states), dim=1)
+
+ return hidden_states
+
+
+class CogView3PlusTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
+ """
+ The Transformer model introduced in CogView3.
+
+ Reference: https://arxiv.org/abs/2403.05121
+ """
+
+ _supports_gradient_checkpointing = True
+
+ @register_to_config
+ def __init__(
+ self,
+ sample_size: int = 128,
+ patch_size: int = 2,
+ in_channels: int = 16,
+ num_layers: int = 30,
+ attention_head_dim: int = 40,
+ num_attention_heads: int = 64,
+ out_channels: int = 16,
+ encoder_hidden_states_dim: int = 4096,
+ pooled_projection_dim: int = 1536,
+ pos_embed_max_size: int = 128,
+ time_embed_dim: int = 512,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
+
+ self.pos_embed = CogView3PlusPatchEmbed(
+ in_channels=self.config.in_channels,
+ hidden_size=self.inner_dim,
+ patch_size=self.config.patch_size,
+ text_hidden_size=self.config.encoder_hidden_states_dim,
+ pos_embed_max_size=self.config.pos_embed_max_size,
+ )
+
+ self.time_text_embed = CombinedTimestepTextProjEmbeddings(
+ embedding_dim=self.config.time_embed_dim,
+ pooled_projection_dim=self.config.pooled_projection_dim,
+ timesteps_dim=self.inner_dim,
+ )
+
+ self.transformer_blocks = nn.ModuleList(
+ [
+ CogView3PlusTransformerBlock(
+ dim=self.inner_dim,
+ num_attention_heads=self.config.num_attention_heads,
+ attention_head_dim=self.config.attention_head_dim,
+ time_embed_dim=self.config.time_embed_dim,
+ )
+ for _ in range(self.config.num_layers)
+ ]
+ )
+
+ self.norm_out = AdaLayerNormContinuous(
+ embedding_dim=self.inner_dim,
+ conditioning_embedding_dim=self.config.time_embed_dim,
+ elementwise_affine=False,
+ eps=1e-6,
+ )
+ self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
+
+ self.gradient_checkpointing = False
+
+ @property
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
+ r"""
+ Returns:
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
+ indexed by its weight name.
+ """
+ # set recursively
+ processors = {}
+
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
+ if hasattr(module, "get_processor"):
+ processors[f"{name}.processor"] = module.get_processor()
+
+ for sub_name, child in module.named_children():
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
+
+ return processors
+
+ for name, module in self.named_children():
+ fn_recursive_add_processors(name, module, processors)
+
+ return processors
+
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
+ r"""
+ Sets the attention processor to use to compute attention.
+
+ Parameters:
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
+ for **all** `Attention` layers.
+
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
+ processor. This is strongly recommended when setting trainable attention processors.
+
+ """
+ count = len(self.attn_processors.keys())
+
+ if isinstance(processor, dict) and len(processor) != count:
+ raise ValueError(
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
+ )
+
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
+ if hasattr(module, "set_processor"):
+ if not isinstance(processor, dict):
+ module.set_processor(processor)
+ else:
+ module.set_processor(processor.pop(f"{name}.processor"))
+
+ for sub_name, child in module.named_children():
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
+
+ for name, module in self.named_children():
+ fn_recursive_attn_processor(name, module, processor)
+
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0
+ def fuse_qkv_projections(self):
+ """
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
+ are fused. For cross-attention modules, key and value projection matrices are fused.
+
+
+
+ This API is 🧪 experimental.
+
+
+ """
+ self.original_attn_processors = None
+
+ for _, attn_processor in self.attn_processors.items():
+ if "Added" in str(attn_processor.__class__.__name__):
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
+
+ self.original_attn_processors = self.attn_processors
+
+ for module in self.modules():
+ if isinstance(module, Attention):
+ module.fuse_projections(fuse=True)
+
+ self.set_attn_processor(FusedJointAttnProcessor2_0())
+
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
+ def unfuse_qkv_projections(self):
+ """Disables the fused QKV projection if enabled.
+
+
+
+ This API is 🧪 experimental.
+
+
+
+ """
+ if self.original_attn_processors is not None:
+ self.set_attn_processor(self.original_attn_processors)
+
+ def _set_gradient_checkpointing(self, module, value=False):
+ if hasattr(module, "gradient_checkpointing"):
+ module.gradient_checkpointing = value
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ encoder_hidden_states: torch.FloatTensor = None,
+ pooled_projections: torch.FloatTensor = None,
+ timestep: torch.LongTensor = None,
+ return_dict: bool = True,
+ ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
+ """
+ The [`CogView3PlusTransformer2DModel`] forward method.
+
+ Args:
+ hidden_states (`torch.FloatTensor`): Input `hidden_states`.
+ timestep (`torch.LongTensor`): Indicates denoising step.
+ y (`torch.LongTensor`, *optional*): 标签输入,用于获取标签嵌入。
+ block_controlnet_hidden_states: (`list` of `torch.Tensor`): A list of tensors for residuals.
+ joint_attention_kwargs (`dict`, *optional*): Additional kwargs for the attention processor.
+ return_dict (`bool`, *optional*, defaults to `True`): Whether to return a `Transformer2DModelOutput`.
+
+ Returns:
+ Output tensor or `Transformer2DModelOutput`.
+ """
+
+ height, width = hidden_states.shape[-2:]
+ text_length = encoder_hidden_states.shape[1]
+
+ hidden_states = self.pos_embed(
+ hidden_states, encoder_hidden_states
+ ) # takes care of adding positional embeddings too.
+ emb = self.time_text_embed(timestep, pooled_projections)
+
+ for index_block, block in enumerate(self.transformer_blocks):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(block),
+ hidden_states,
+ emb,
+ text_length,
+ **ckpt_kwargs,
+ )
+ else:
+ hidden_states = block(
+ hidden_states=hidden_states,
+ emb=emb,
+ text_length=text_length,
+ )
+
+ hidden_states = hidden_states[:, text_length:]
+ hidden_states = self.norm_out(hidden_states, emb)
+ hidden_states = self.proj_out(hidden_states) # (batch_size, height*width, patch_size*patch_size*out_channels)
+ # unpatchify
+ patch_size = self.config.patch_size
+ height = height // patch_size
+ width = width // patch_size
+
+ hidden_states = hidden_states.reshape(
+ shape=(hidden_states.shape[0], height, width, self.out_channels, patch_size, patch_size)
+ )
+ hidden_states = torch.einsum("nhwcpq->nchpwq", hidden_states)
+ output = hidden_states.reshape(
+ shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
+ )
+
+ if not return_dict:
+ return (output,)
+
+ return Transformer2DModelOutput(sample=output)
diff --git a/src/diffusers/pipelines/__init__.py b/src/diffusers/pipelines/__init__.py
index 3b6cde17c8a3..7ff219efdf5f 100644
--- a/src/diffusers/pipelines/__init__.py
+++ b/src/diffusers/pipelines/__init__.py
@@ -145,6 +145,9 @@
"CogVideoXImageToVideoPipeline",
"CogVideoXVideoToVideoPipeline",
]
+ _import_structure["cogview3"] = [
+ "CogView3PlusPipeline",
+ ]
_import_structure["controlnet"].extend(
[
"BlipDiffusionControlNetPipeline",
@@ -469,6 +472,7 @@
from .aura_flow import AuraFlowPipeline
from .blip_diffusion import BlipDiffusionPipeline
from .cogvideo import CogVideoXImageToVideoPipeline, CogVideoXPipeline, CogVideoXVideoToVideoPipeline
+ from .cogview3 import CogView3PlusPipeline
from .controlnet import (
BlipDiffusionControlNetPipeline,
StableDiffusionControlNetImg2ImgPipeline,
diff --git a/src/diffusers/pipelines/auto_pipeline.py b/src/diffusers/pipelines/auto_pipeline.py
index e3e78d0663fa..1dc1711dce0b 100644
--- a/src/diffusers/pipelines/auto_pipeline.py
+++ b/src/diffusers/pipelines/auto_pipeline.py
@@ -20,6 +20,7 @@
from ..configuration_utils import ConfigMixin
from ..utils import is_sentencepiece_available
from .aura_flow import AuraFlowPipeline
+from .cogview3 import CogView3PlusPipeline
from .controlnet import (
StableDiffusionControlNetImg2ImgPipeline,
StableDiffusionControlNetInpaintPipeline,
@@ -118,6 +119,7 @@
("flux", FluxPipeline),
("flux-controlnet", FluxControlNetPipeline),
("lumina", LuminaText2ImgPipeline),
+ ("cogview3", CogView3PlusPipeline),
]
)
diff --git a/src/diffusers/pipelines/cogview3/__init__.py b/src/diffusers/pipelines/cogview3/__init__.py
new file mode 100644
index 000000000000..50895251ba0b
--- /dev/null
+++ b/src/diffusers/pipelines/cogview3/__init__.py
@@ -0,0 +1,47 @@
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ DIFFUSERS_SLOW_IMPORT,
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ get_objects_from_module,
+ is_torch_available,
+ is_transformers_available,
+)
+
+
+_dummy_objects = {}
+_additional_imports = {}
+_import_structure = {"pipeline_output": ["CogView3PlusPipelineOutput"]}
+
+try:
+ if not (is_transformers_available() and is_torch_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ...utils import dummy_torch_and_transformers_objects # noqa F403
+
+ _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
+else:
+ _import_structure["pipeline_cogview3plus"] = ["CogView3PlusPipeline"]
+if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
+ try:
+ if not (is_transformers_available() and is_torch_available()):
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
+ else:
+ from .pipeline_cogview3plus import CogView3PlusPipeline
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(
+ __name__,
+ globals()["__file__"],
+ _import_structure,
+ module_spec=__spec__,
+ )
+
+ for name, value in _dummy_objects.items():
+ setattr(sys.modules[__name__], name, value)
+ for name, value in _additional_imports.items():
+ setattr(sys.modules[__name__], name, value)
diff --git a/src/diffusers/pipelines/cogview3/pipeline_cogview3plus.py b/src/diffusers/pipelines/cogview3/pipeline_cogview3plus.py
new file mode 100644
index 000000000000..3413fcda9e85
--- /dev/null
+++ b/src/diffusers/pipelines/cogview3/pipeline_cogview3plus.py
@@ -0,0 +1,707 @@
+# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Any, Callable, Dict, List, Optional, Union
+
+import numpy as np
+import torch
+from transformers import T5EncoderModel, T5TokenizerFast
+
+from ...image_processor import VaeImageProcessor
+from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
+from ...models.autoencoders import AutoencoderKL
+from ...models.transformers.transformer_cogview3plus import CogView3PlusTransformer2DModel
+from ...schedulers import FlowMatchEulerDiscreteScheduler
+from ...utils import (
+ USE_PEFT_BACKEND,
+ is_torch_xla_available,
+ logging,
+ replace_example_docstring,
+ scale_lora_layers,
+ unscale_lora_layers,
+)
+from ...utils.torch_utils import randn_tensor
+from ..pipeline_utils import DiffusionPipeline
+from .pipeline_output import CogView3PipelineOutput
+
+
+if is_torch_xla_available():
+ import torch_xla.core.xla_model as xm
+
+ XLA_AVAILABLE = True
+else:
+ XLA_AVAILABLE = False
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+EXAMPLE_DOC_STRING = """
+ Examples:
+ ```py
+ >>> import torch
+ >>> from diffusers import CogView3PlusPipeline
+
+ >>> pipe = CogView3PlusPipeline.from_pretrained("THUDM/CogView3-Plus-3B", torch_dtype=torch.bfloat16)
+ >>> pipe.to("cuda")
+ >>> prompt = "A cat holding a sign that says hello world"
+ >>> # Depending on the variant being used, the pipeline call will slightly vary.
+ >>> # Refer to the pipeline documentation for more details.
+ >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
+ >>> image.save("cat.png")
+ ```
+"""
+
+
+def calculate_shift(
+ image_seq_len,
+ base_seq_len: int = 256,
+ max_seq_len: int = 4096,
+ base_shift: float = 0.5,
+ max_shift: float = 1.16,
+):
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
+ b = base_shift - m * base_seq_len
+ mu = image_seq_len * m + b
+ return mu
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
+def retrieve_timesteps(
+ scheduler,
+ num_inference_steps: Optional[int] = None,
+ device: Optional[Union[str, torch.device]] = None,
+ timesteps: Optional[List[int]] = None,
+ sigmas: Optional[List[float]] = None,
+ **kwargs,
+):
+ """
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
+
+ Args:
+ scheduler (`SchedulerMixin`):
+ The scheduler to get timesteps from.
+ num_inference_steps (`int`):
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
+ must be `None`.
+ device (`str` or `torch.device`, *optional*):
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
+ timesteps (`List[int]`, *optional*):
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
+ `num_inference_steps` and `sigmas` must be `None`.
+ sigmas (`List[float]`, *optional*):
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
+ `num_inference_steps` and `timesteps` must be `None`.
+
+ Returns:
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
+ second element is the number of inference steps.
+ """
+ if timesteps is not None and sigmas is not None:
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
+ if timesteps is not None:
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
+ if not accepts_timesteps:
+ raise ValueError(
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
+ f" timestep schedules. Please check whether you are using the correct scheduler."
+ )
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
+ timesteps = scheduler.timesteps
+ num_inference_steps = len(timesteps)
+ elif sigmas is not None:
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
+ if not accept_sigmas:
+ raise ValueError(
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
+ )
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
+ timesteps = scheduler.timesteps
+ num_inference_steps = len(timesteps)
+ else:
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
+ timesteps = scheduler.timesteps
+ return timesteps, num_inference_steps
+
+
+class CogView3PlusPipeline(DiffusionPipeline, PeftAdapterMixin, FromOriginalModelMixin):
+ r"""
+ The CogView3 pipeline for text-to-image generation.
+
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
+
+ Args:
+ transformer ([`CogView3PlusTransformerBlock`]):
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`T5EncoderModel`]):
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
+ tokenizer (`T5TokenizerFast`):
+ Second Tokenizer of class
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
+ """
+
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
+ _optional_components = []
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
+
+ def __init__(
+ self,
+ scheduler: FlowMatchEulerDiscreteScheduler,
+ vae: AutoencoderKL,
+ text_encoder: T5EncoderModel,
+ tokenizer: T5TokenizerFast,
+ transformer: CogView3PlusTransformer2DModel,
+ ):
+ super().__init__()
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ transformer=transformer,
+ scheduler=scheduler,
+ )
+ self.vae_scale_factor = (
+ 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
+ )
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
+ self.tokenizer_max_length = (
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
+ )
+ self.default_sample_size = 64
+
+ def _get_t5_prompt_embeds(
+ self,
+ prompt: Union[str, List[str]] = None,
+ num_images_per_prompt: int = 1,
+ max_sequence_length: int = 256,
+ device: Optional[torch.device] = None,
+ dtype: Optional[torch.dtype] = None,
+ ):
+ device = device or self._execution_device
+ dtype = dtype or self.text_encoder.dtype
+
+ prompt = [prompt] if isinstance(prompt, str) else prompt
+ batch_size = len(prompt)
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=max_sequence_length,
+ truncation=True,
+ return_length=False,
+ return_overflowing_tokens=False,
+ return_tensors="pt",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because `max_sequence_length` is set to "
+ f" {max_sequence_length} tokens: {removed_text}"
+ )
+
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)[0].to(
+ dtype=dtype, device=device
+ )
+
+ _, seq_len, _ = prompt_embeds.shape
+
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
+
+ return prompt_embeds
+
+ def encode_prompt(
+ self,
+ prompt: Union[str, List[str]],
+ device: Optional[torch.device] = None,
+ num_images_per_prompt: int = 1,
+ prompt_embeds: Optional[torch.FloatTensor] = None,
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+ max_sequence_length: int = 512,
+ lora_scale: Optional[float] = None,
+ ):
+ r"""
+
+ Args:
+ prompt (`str` or `List[str]`, *optional*):
+ prompt to be encoded
+ device: (`torch.device`):
+ torch device
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+ provided, text embeddings will be generated from `prompt` input argument.
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
+ lora_scale (`float`, *optional*):
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
+ """
+ device = device or self._execution_device
+
+ # set lora scale so that monkey patched LoRA
+ # function of text encoder can correctly access it
+ if lora_scale is not None and isinstance(self, PeftAdapterMixin):
+ self._lora_scale = lora_scale
+
+ # dynamically adjust the LoRA scale
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
+ scale_lora_layers(self.text_encoder, lora_scale)
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
+ scale_lora_layers(self.text_encoder_2, lora_scale)
+
+ prompt = [prompt] if isinstance(prompt, str) else prompt
+
+ if prompt_embeds is None:
+ prompt_embeds = self._get_t5_prompt_embeds(
+ prompt=prompt,
+ num_images_per_prompt=num_images_per_prompt,
+ max_sequence_length=max_sequence_length,
+ device=device,
+ )
+
+ if self.text_encoder is not None:
+ if isinstance(self, PeftAdapterMixin) and USE_PEFT_BACKEND:
+ # Retrieve the original scale by scaling back the LoRA layers
+ unscale_lora_layers(self.text_encoder, lora_scale)
+
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
+
+ return prompt_embeds, pooled_prompt_embeds, text_ids
+
+ def check_inputs(
+ self,
+ prompt,
+ height,
+ width,
+ prompt_embeds=None,
+ pooled_prompt_embeds=None,
+ callback_on_step_end_tensor_inputs=None,
+ max_sequence_length=None,
+ ):
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if callback_on_step_end_tensor_inputs is not None and not all(
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
+ ):
+ raise ValueError(
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
+ )
+
+ if prompt is not None and prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+ " only forward one of the two."
+ )
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
+ raise ValueError(
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
+ )
+
+ if max_sequence_length is not None and max_sequence_length > 512:
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
+
+ @staticmethod
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3)
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
+
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
+
+ latent_image_ids = latent_image_ids.reshape(
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
+ )
+
+ return latent_image_ids.to(device=device, dtype=dtype)
+
+ @staticmethod
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
+
+ return latents
+
+ @staticmethod
+ def _unpack_latents(latents, height, width, vae_scale_factor):
+ batch_size, num_patches, channels = latents.shape
+
+ height = height // vae_scale_factor
+ width = width // vae_scale_factor
+
+ latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
+
+ latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
+
+ return latents
+
+ def enable_vae_slicing(self):
+ r"""
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
+ """
+ self.vae.enable_slicing()
+
+ def disable_vae_slicing(self):
+ r"""
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
+ computing decoding in one step.
+ """
+ self.vae.disable_slicing()
+
+ def enable_vae_tiling(self):
+ r"""
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
+ processing larger images.
+ """
+ self.vae.enable_tiling()
+
+ def disable_vae_tiling(self):
+ r"""
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
+ computing decoding in one step.
+ """
+ self.vae.disable_tiling()
+
+ def prepare_latents(
+ self,
+ batch_size,
+ num_channels_latents,
+ height,
+ width,
+ dtype,
+ device,
+ generator,
+ latents=None,
+ ):
+ height = 2 * (int(height) // self.vae_scale_factor)
+ width = 2 * (int(width) // self.vae_scale_factor)
+
+ shape = (batch_size, num_channels_latents, height, width)
+
+ if latents is not None:
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
+ return latents.to(device=device, dtype=dtype), latent_image_ids
+
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
+
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
+
+ return latents, latent_image_ids
+
+ @property
+ def guidance_scale(self):
+ return self._guidance_scale
+
+ @property
+ def joint_attention_kwargs(self):
+ return self._joint_attention_kwargs
+
+ @property
+ def num_timesteps(self):
+ return self._num_timesteps
+
+ @property
+ def interrupt(self):
+ return self._interrupt
+
+ @torch.no_grad()
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
+ def __call__(
+ self,
+ prompt: Union[str, List[str]] = None,
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 28,
+ timesteps: List[int] = None,
+ guidance_scale: float = 3.5,
+ num_images_per_prompt: Optional[int] = 1,
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+ latents: Optional[torch.FloatTensor] = None,
+ prompt_embeds: Optional[torch.FloatTensor] = None,
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
+ max_sequence_length: int = 512,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
+ instead.
+ prompt_2 (`str` or `List[str]`, *optional*):
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
+ will be used instead
+ prompt_3 (`str` or `List[str]`, *optional*):
+ The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
+ will be used instead
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ timesteps (`List[int]`, *optional*):
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
+ passed will be used. Must be in descending order.
+ guidance_scale (`float`, *optional*, defaults to 7.0):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+ less than `1`).
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
+ `text_encoder_2`. If not defined, `negative_prompt` is used instead
+ negative_prompt_3 (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
+ `text_encoder_3`. If not defined, `negative_prompt` is used instead
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
+ to make generation deterministic.
+ latents (`torch.FloatTensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+ provided, text embeddings will be generated from `prompt` input argument.
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+ argument.
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
+ input argument.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
+ of a plain tuple.
+ joint_attention_kwargs (`dict`, *optional*):
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
+ `self.processor` in
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+ callback_on_step_end (`Callable`, *optional*):
+ A function that calls at the end of each denoising steps during the inference. The function is called
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
+ `callback_on_step_end_tensor_inputs`.
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
+ `._callback_tensor_inputs` attribute of your pipeline class.
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
+
+ Examples:
+
+ Returns:
+ [`~pipelines.cogview3.CogView3PlusPipelineOutput`] or `tuple`:
+ [`~pipelines.cogview3.CogView3PlusPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is a list with the generated images.
+ """
+
+ height = height or self.default_sample_size * self.vae_scale_factor
+ width = width or self.default_sample_size * self.vae_scale_factor
+
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs(
+ prompt,
+ height,
+ width,
+ prompt_embeds=prompt_embeds,
+ pooled_prompt_embeds=pooled_prompt_embeds,
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
+ max_sequence_length=max_sequence_length,
+ )
+
+ self._guidance_scale = guidance_scale
+ self._joint_attention_kwargs = joint_attention_kwargs
+ self._interrupt = False
+
+ # 2. Define call parameters
+ if prompt is not None and isinstance(prompt, str):
+ batch_size = 1
+ elif prompt is not None and isinstance(prompt, list):
+ batch_size = len(prompt)
+ else:
+ batch_size = prompt_embeds.shape[0]
+
+ device = self._execution_device
+
+ lora_scale = (
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
+ )
+ (
+ prompt_embeds,
+ pooled_prompt_embeds,
+ text_ids,
+ ) = self.encode_prompt(
+ prompt=prompt,
+ prompt_embeds=prompt_embeds,
+ pooled_prompt_embeds=pooled_prompt_embeds,
+ device=device,
+ num_images_per_prompt=num_images_per_prompt,
+ max_sequence_length=max_sequence_length,
+ lora_scale=lora_scale,
+ )
+
+ # 4. Prepare latent variables
+ num_channels_latents = self.transformer.config.in_channels // 4
+ latents, latent_image_ids = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ prompt_embeds.dtype,
+ device,
+ generator,
+ latents,
+ )
+
+ # 5. Prepare timesteps
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
+ image_seq_len = latents.shape[1]
+ mu = calculate_shift(
+ image_seq_len,
+ self.scheduler.config.base_image_seq_len,
+ self.scheduler.config.max_image_seq_len,
+ self.scheduler.config.base_shift,
+ self.scheduler.config.max_shift,
+ )
+ timesteps, num_inference_steps = retrieve_timesteps(
+ self.scheduler,
+ num_inference_steps,
+ device,
+ timesteps,
+ sigmas,
+ mu=mu,
+ )
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
+ self._num_timesteps = len(timesteps)
+
+ # handle guidance
+ if self.transformer.config.guidance_embeds:
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
+ guidance = guidance.expand(latents.shape[0])
+ else:
+ guidance = None
+
+ # 6. Denoising loop
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ if self.interrupt:
+ continue
+
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
+
+ noise_pred = self.transformer(
+ hidden_states=latents,
+ timestep=timestep / 1000,
+ guidance=guidance,
+ pooled_projections=pooled_prompt_embeds,
+ encoder_hidden_states=prompt_embeds,
+ txt_ids=text_ids,
+ img_ids=latent_image_ids,
+ joint_attention_kwargs=self.joint_attention_kwargs,
+ return_dict=False,
+ )[0]
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents_dtype = latents.dtype
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
+
+ if latents.dtype != latents_dtype:
+ if torch.backends.mps.is_available():
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
+ latents = latents.to(latents_dtype)
+
+ if callback_on_step_end is not None:
+ callback_kwargs = {}
+ for k in callback_on_step_end_tensor_inputs:
+ callback_kwargs[k] = locals()[k]
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
+
+ latents = callback_outputs.pop("latents", latents)
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+
+ if XLA_AVAILABLE:
+ xm.mark_step()
+
+ if output_type == "latent":
+ image = latents
+
+ else:
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
+ image = self.vae.decode(latents, return_dict=False)[0]
+ image = self.image_processor.postprocess(image, output_type=output_type)
+
+ # Offload all models
+ self.maybe_free_model_hooks()
+
+ if not return_dict:
+ return (image,)
+
+ return CogView3PipelineOutput(images=image)
diff --git a/src/diffusers/pipelines/cogview3/pipeline_output.py b/src/diffusers/pipelines/cogview3/pipeline_output.py
new file mode 100644
index 000000000000..3891dd51e691
--- /dev/null
+++ b/src/diffusers/pipelines/cogview3/pipeline_output.py
@@ -0,0 +1,21 @@
+from dataclasses import dataclass
+from typing import List, Union
+
+import numpy as np
+import PIL.Image
+
+from ...utils import BaseOutput
+
+
+@dataclass
+class CogView3PipelineOutput(BaseOutput):
+ """
+ Output class for CogView3 pipelines.
+
+ Args:
+ images (`List[PIL.Image.Image]` or `np.ndarray`)
+ List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
+ num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
+ """
+
+ images: Union[List[PIL.Image.Image], np.ndarray]
diff --git a/src/diffusers/utils/dummy_torch_and_transformers_objects.py b/src/diffusers/utils/dummy_torch_and_transformers_objects.py
index 1927fc8cd4d3..69ce91da0f25 100644
--- a/src/diffusers/utils/dummy_torch_and_transformers_objects.py
+++ b/src/diffusers/utils/dummy_torch_and_transformers_objects.py
@@ -422,6 +422,21 @@ def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
+class CogView3PlusPipeline(metaclass=DummyObject):
+ _backends = ["torch", "transformers"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["torch", "transformers"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["torch", "transformers"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["torch", "transformers"])
+
+
class HunyuanDiTControlNetPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]