diff --git a/tests/lora/test_lora_layers_sd3.py b/tests/lora/test_lora_layers_sd3.py index 78d4b786d21b..b37a2a297e04 100644 --- a/tests/lora/test_lora_layers_sd3.py +++ b/tests/lora/test_lora_layers_sd3.py @@ -166,48 +166,14 @@ def get_inputs(self, device, seed=0): def test_sd3_img2img_lora(self): pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.float16) - pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors") + pipe.load_lora_weights("zwloong/sd3-lora-training-rank16-v2", weight_name="pytorch_lora_weights.safetensors") pipe.enable_sequential_cpu_offload() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images[0] - image_slice = image[0, :10, :10] - expected_slice = np.array( - [ - 0.47827148, - 0.5, - 0.71972656, - 0.3955078, - 0.4194336, - 0.69628906, - 0.37036133, - 0.40820312, - 0.6923828, - 0.36450195, - 0.40429688, - 0.6904297, - 0.35595703, - 0.39257812, - 0.68652344, - 0.35498047, - 0.3984375, - 0.68310547, - 0.34716797, - 0.3996582, - 0.6855469, - 0.3388672, - 0.3959961, - 0.6816406, - 0.34033203, - 0.40429688, - 0.6845703, - 0.34228516, - 0.4086914, - 0.6870117, - ] - ) - + image_slice = image[0, -3:, -3:] + expected_slice = np.array([0.5396, 0.5776, 0.7432, 0.5151, 0.5586, 0.7383, 0.5537, 0.5933, 0.7153]) max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) assert max_diff < 1e-4, f"Outputs are not close enough, got {max_diff}"