|
1 | | -# Reference |
| 1 | +# AWS Deep Learning Containers (DLCs) |
2 | 2 |
|
3 | 3 | ## Deep Learning Container |
4 | 4 |
|
5 | | -Below you can find a version table of currently available Hugging Face DLCs. The table doesn't include the full `image_uri` here are two examples on how to construct those if needed. |
6 | | - |
7 | | -**Manually construction the `image_uri`** |
8 | | - |
9 | | -`{dlc-aws-account-id}.dkr.ecr.{region}.amazonaws.com/huggingface-{framework}-{(training | inference)}:{framework-version}-transformers{transformers-version}-{device}-{python-version}-{device-tag}` |
10 | | - |
11 | | -- `dlc-aws-account-id`: The AWS account ID of the account that owns the ECR repository. You can find them in the [here](https://github.com/aws/sagemaker-python-sdk/blob/e0b9d38e1e3b48647a02af23c4be54980e53dc61/src/sagemaker/image_uri_config/huggingface.json#L21) |
12 | | -- `region`: The AWS region where you want to use it. |
13 | | -- `framework`: The framework you want to use, either `pytorch` or `tensorflow`. |
14 | | -- `(training | inference)`: The training or inference mode. |
15 | | -- `framework-version`: The version of the framework you want to use. |
16 | | -- `transformers-version`: The version of the transformers library you want to use. |
17 | | -- `device`: The device you want to use, either `cpu` or `gpu`. |
18 | | -- `python-version`: The version of the python of the DLC. |
19 | | -- `device-tag`: The device tag you want to use. The device tag can include os version and cuda version |
20 | | - |
21 | | -**Example 1: PyTorch Training:** |
22 | | -`763104351884.dkr.ecr.us-west-2.amazonaws.com/huggingface-pytorch-training:1.6.0-transformers4.4.2-gpu-py36-cu110-ubuntu18.04` |
23 | | -**Example 2: Tensorflow Inference:** |
24 | | -`763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-inference:2.4.1-transformers4.6.1-cpu-py37-ubuntu18.04` |
25 | | - |
26 | | -## Training DLC Overview |
27 | | - |
28 | | -The Training DLC overview includes all released and available Hugging Face Training DLCs. It includes PyTorch and TensorFlow flavored |
29 | | -versions for GPU. |
30 | | - |
31 | | -| 🤗 Transformers version | 🤗 Datasets version | PyTorch/TensorFlow version | type | device | Python Version | |
32 | | -| ----------------------- | ------------------- | -------------------------- | -------- | ------ | -------------- | |
33 | | -| 4.4.2 | 1.5.0 | PyTorch 1.6.0 | training | GPU | 3.6 | |
34 | | -| 4.4.2 | 1.5.0 | TensorFlow 2.4.1 | training | GPU | 3.7 | |
35 | | -| 4.5.0 | 1.5.0 | PyTorch 1.6.0 | training | GPU | 3.6 | |
36 | | -| 4.5.0 | 1.5.0 | TensorFlow 2.4.1 | training | GPU | 3.7 | |
37 | | -| 4.6.1 | 1.6.2 | PyTorch 1.6.0 | training | GPU | 3.6 | |
38 | | -| 4.6.1 | 1.6.2 | PyTorch 1.7.1 | training | GPU | 3.6 | |
39 | | -| 4.6.1 | 1.6.2 | TensorFlow 2.4.1 | training | GPU | 3.7 | |
40 | | -| 4.10.2 | 1.11.0 | PyTorch 1.8.1 | training | GPU | 3.6 | |
41 | | -| 4.10.2 | 1.11.0 | PyTorch 1.9.0 | training | GPU | 3.8 | |
42 | | -| 4.10.2 | 1.11.0 | TensorFlow 2.4.1 | training | GPU | 3.7 | |
43 | | -| 4.10.2 | 1.11.0 | TensorFlow 2.5.1 | training | GPU | 3.7 | |
44 | | -| 4.11.0 | 1.12.1 | PyTorch 1.9.0 | training | GPU | 3.8 | |
45 | | -| 4.11.0 | 1.12.1 | TensorFlow 2.5.1 | training | GPU | 3.7 | |
46 | | -| 4.12.3 | 1.15.1 | PyTorch 1.9.1 | training | GPU | 3.8 | |
47 | | -| 4.12.3 | 1.15.1 | TensorFlow 2.5.1 | training | GPU | 3.7 | |
48 | | -| 4.17.0 | 1.18.4 | PyTorch 1.10.2 | training | GPU | 3.8 | |
49 | | -| 4.17.0 | 1.18.4 | TensorFlow 2.6.3 | training | GPU | 3.8 | |
50 | | -| 4.26.0 | 2.9.0 | PyTorch 1.13.1 | training | GPU | 3.9 | |
51 | | - |
52 | | -## Inference DLC Overview |
53 | | - |
54 | | -The Inference DLC overview includes all released and available Hugging Face Inference DLCs. It includes PyTorch and TensorFlow flavored |
55 | | -versions for CPU, GPU & AWS Inferentia. |
56 | | - |
57 | | - |
58 | | -| 🤗 Transformers version | PyTorch/TensorFlow version | type | device | Python Version | |
59 | | -| ----------------------- | -------------------------- | --------- | ------ | -------------- | |
60 | | -| 4.6.1 | PyTorch 1.7.1 | inference | CPU | 3.6 | |
61 | | -| 4.6.1 | PyTorch 1.7.1 | inference | GPU | 3.6 | |
62 | | -| 4.6.1 | TensorFlow 2.4.1 | inference | CPU | 3.7 | |
63 | | -| 4.6.1 | TensorFlow 2.4.1 | inference | GPU | 3.7 | |
64 | | -| 4.10.2 | PyTorch 1.8.1 | inference | GPU | 3.6 | |
65 | | -| 4.10.2 | PyTorch 1.9.0 | inference | GPU | 3.8 | |
66 | | -| 4.10.2 | TensorFlow 2.4.1 | inference | GPU | 3.7 | |
67 | | -| 4.10.2 | TensorFlow 2.5.1 | inference | GPU | 3.7 | |
68 | | -| 4.10.2 | PyTorch 1.8.1 | inference | CPU | 3.6 | |
69 | | -| 4.10.2 | PyTorch 1.9.0 | inference | CPU | 3.8 | |
70 | | -| 4.10.2 | TensorFlow 2.4.1 | inference | CPU | 3.7 | |
71 | | -| 4.10.2 | TensorFlow 2.5.1 | inference | CPU | 3.7 | |
72 | | -| 4.11.0 | PyTorch 1.9.0 | inference | GPU | 3.8 | |
73 | | -| 4.11.0 | TensorFlow 2.5.1 | inference | GPU | 3.7 | |
74 | | -| 4.11.0 | PyTorch 1.9.0 | inference | CPU | 3.8 | |
75 | | -| 4.11.0 | TensorFlow 2.5.1 | inference | CPU | 3.7 | |
76 | | -| 4.12.3 | PyTorch 1.9.1 | inference | GPU | 3.8 | |
77 | | -| 4.12.3 | TensorFlow 2.5.1 | inference | GPU | 3.7 | |
78 | | -| 4.12.3 | PyTorch 1.9.1 | inference | CPU | 3.8 | |
79 | | -| 4.12.3 | TensorFlow 2.5.1 | inference | CPU | 3.7 | |
80 | | -| 4.12.3 | PyTorch 1.9.1 | inference | Inferentia | 3.7 | |
81 | | -| 4.17.0 | PyTorch 1.10.2 | inference | GPU | 3.8 | |
82 | | -| 4.17.0 | TensorFlow 2.6.3 | inference | GPU | 3.8 | |
83 | | -| 4.17.0 | PyTorch 1.10.2 | inference | CPU | 3.8 | |
84 | | -| 4.17.0 | TensorFlow 2.6.3 | inference | CPU | 3.8 | |
85 | | -| 4.26.0 | PyTorch 1.13.1 | inference | CPU | 3.9 | |
86 | | -| 4.26.0 | PyTorch 1.13.1 | inference | GPU | 3.9 | |
87 | | - |
88 | | - |
| 5 | +There are several different types of AWS Deep Learning Containers. Feel free to explore further in the subheadings! |
89 | 6 |
|
90 | 7 | ## Hugging Face Transformers Amazon SageMaker Examples |
91 | 8 |
|
|
0 commit comments