Skip to content

Commit 6f12306

Browse files
committed
add huggingface_hub tiny agents
1 parent 777c4d3 commit 6f12306

File tree

1 file changed

+104
-12
lines changed

1 file changed

+104
-12
lines changed

docs/hub/agents.md

Lines changed: 104 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Agents on the Hub
22

3-
This page compiles all the libraries and tools Hugging Face offers for agentic workflows: huggingface.js mcp-client, Gradio MCP Server and smolagents.
3+
This page compiles all the libraries and tools Hugging Face offers for agentic workflows: huggingface.js tiny-agents, huggingface_hub (Python) tiny-agents, Gradio MCP Server and smolagents.
44

55
## smolagents
66

@@ -43,27 +43,119 @@ with MCPClient(server_parameters) as tools:
4343

4444
Learn more [in the documentation](https://huggingface.co/docs/smolagents/tutorials/tools#use-mcp-tools-with-mcpclient-directly).
4545

46-
## huggingface.js mcp-client
4746

48-
Huggingface.js offers an MCP client served with [Inference Providers](https://huggingface.co/docs/inference-providers/en/index) or local LLMs. Getting started with them is as simple as running `pnpm agent`. You can plug and play different models and providers by setting `PROVIDER` and `MODEL_ID` environment variables.
47+
## @huggingface/tiny-agents (JS)
48+
49+
`@huggingface/tiny-agents` offers a lightweight toolkit for running and building MCP-powered agents on top of the Hugging Face Inference Client + Model Context Protocol (MCP).
50+
51+
52+
**Getting Started**
4953

5054
```bash
51-
export HF_TOKEN="hf_..."
52-
export MODEL_ID="Qwen/Qwen2.5-72B-Instruct"
53-
export PROVIDER="nebius"
54-
npx @huggingface/mcp-client
55+
npx @huggingface/tiny-agents [command] "agent/id"
56+
```
57+
58+
```
59+
Usage:
60+
tiny-agents [flags]
61+
tiny-agents run "agent/id"
62+
tiny-agents serve "agent/id"
63+
64+
Available Commands:
65+
run Run the Agent in command-line
66+
serve Run the Agent as an OpenAI-compatible HTTP server
67+
```
68+
69+
You can load agents directly from the Hugging Face Hub [tiny-agents](https://huggingface.co/datasets/tiny-agents/tiny-agents) Dataset, or specify a path to your own local agent configuration.
70+
71+
**Define Custom Agents**
72+
73+
To create your own agent, set up a folder (e.g., `my-agent/`) with an `agent.json` file. The following example shows a web-browsing agent configured to use the [Qwen/Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) model via Nebius inference provider, and it comes equipped with a playwright MCP server, which lets it use a web browser
74+
75+
```json
76+
{
77+
"model": "Qwen/Qwen2.5-72B-Instruct",
78+
"provider": "nebius",
79+
"servers": [
80+
{
81+
"type": "stdio",
82+
"config": {
83+
"command": "npx",
84+
"args": ["@playwright/mcp@latest"]
85+
}
86+
}
87+
]
88+
}
89+
```
90+
91+
To use a local LLM (such as [llama.cpp](https://github.com/ggerganov/llama.cpp), or [LM Studio](https://lmstudio.ai/)), just provide an `endpointUrl`:
92+
93+
```json
94+
{
95+
"model": "Qwen/Qwen3-32B",
96+
"endpointUrl": "http://localhost:1234/v1",
97+
"servers": [
98+
{
99+
"type": "stdio",
100+
"config": {
101+
"command": "npx",
102+
"args": ["@playwright/mcp@latest"]
103+
}
104+
}
105+
]
106+
}
107+
55108
```
56109

57-
or, you can use any Local LLM (for example via lmstudio):
110+
Optionally, add a `PROMPT.md` to customize the system prompt.
111+
112+
**Advanced Usage**
113+
In addition to the CLI, you can use the `Agent` class for more fine-grained control. For lower-level interactions, use the `MCPClient` from the `@huggingface/mcp-client` package to connect directly to MCP servers and manage tool calls.
114+
115+
Learn more about tiny-agents in the [huggingface.js documentation](https://huggingface.co/docs/huggingface.js/en/tiny-agents/README).
116+
117+
## huggingface_hub (Python)
118+
119+
The `huggingface_hub` library is the easiest way to run MCP-powered agents in Python. It includes a high-level `tiny-agents` CLI as well as programmatic access via the `Agent` and `MCPClient` classes — all built to work with [Hugging Face Inference Providers](https://huggingface.co/docs/inference-providers/index), local LLMs, or any inference endpoint compatible with OpenAI's API specs.
120+
121+
**Getting started**
58122

123+
Install the latest version with MCP support:
59124
```bash
60-
ENDPOINT_URL=http://localhost:1234/v1 \
61-
MODEL_ID=lmstudio-community/Qwen3-14B-GGUF \
62-
npx @huggingface/mcp-client
125+
pip install "huggingface_hub[mcp]>=0.32.2"
63126
```
127+
Then, you can run your agent:
128+
```bash
129+
> tiny-agents run --help
130+
131+
Usage: tiny-agents run [OPTIONS] [PATH] COMMAND [ARGS]...
132+
133+
Run the Agent in the CLI
134+
135+
136+
╭─ Arguments ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
137+
│ path [PATH] Path to a local folder containing an agent.json file or a built-in agent stored in the 'tiny-agents/tiny-agents' Hugging Face dataset │
138+
│ (https://huggingface.co/datasets/tiny-agents/tiny-agents) │
139+
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
140+
╭─ Options ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
141+
│ --help Show this message and exit. │
142+
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
143+
144+
```
145+
146+
The CLI pulls the config, connects to its MCP servers, prints the available tools, and waits for your prompt.
147+
148+
**Advanced Usage**
149+
150+
For more fine-grained control, use the `MCPClient` directly. This low-level interface extends `AsyncInferenceClient` and allows LLMs to call tools via the Model Context Protocol (MCP). It supports both local (`stdio`) and remote (`http`/`sse`) MCP servers, handles tool registration and execution, and streams results back to the model in real-time.
151+
152+
Learn more in the [`huggingface_hub` MCP documentation](https://huggingface.co/docs/huggingface_hub/main/en/package_reference/mcp).
153+
154+
<Tip>
64155

65-
You can get more information about mcp-client [here](https://huggingface.co/docs/huggingface.js/en/mcp-client/README).
156+
Don't hesitate to contribute your agent to the community by opening a Pull Request in the [tiny-agents](https://huggingface.co/datasets/tiny-agents/tiny-agents) Hugging Face dataset.
66157

158+
</Tip>
67159

68160
## Gradio MCP Server / Tools
69161

0 commit comments

Comments
 (0)