|
| 1 | +# Building Your First AI App with Inference Providers |
| 2 | + |
| 3 | +You've learned the basics and understand the provider ecosystem. Now let's build something practical: an **AI Meeting Notes** app that transcribes audio files and generates summaries with action items. |
| 4 | + |
| 5 | +This project demonstrates real-world AI orchestration using multiple specialized providers within a single application. |
| 6 | + |
| 7 | +## Project Overview |
| 8 | + |
| 9 | +Our app will: |
| 10 | +1. **Accept audio** as a microphone input through a web interface |
| 11 | +2. **Transcribe speech** using a fast speech-to-text model |
| 12 | +3. **Generate summaries** using a powerful language model |
| 13 | +4. **Deploy to the web** for easy sharing |
| 14 | + |
| 15 | +**Tech Stack**: Gradio (for the UI) + Inference Providers (for the AI) |
| 16 | + |
| 17 | +## Step 1: Set Up Authentication |
| 18 | + |
| 19 | +Before we start coding, authenticate with Hugging Face using the CLI: |
| 20 | + |
| 21 | +```bash |
| 22 | +pip install huggingface_hub |
| 23 | +huggingface-cli login |
| 24 | +``` |
| 25 | + |
| 26 | +When prompted, paste your Hugging Face token. This handles authentication automatically for all your inference calls. You can generate one from [your settings page](https://huggingface.co/settings/tokens/new?ownUserPermissions=inference.serverless.write&tokenType=fineGrained). |
| 27 | + |
| 28 | +## Step 2: Build the User Interface |
| 29 | + |
| 30 | +Now let's create a simple web interface using Gradio: |
| 31 | + |
| 32 | +```python |
| 33 | +import gradio as gr |
| 34 | +from huggingface_hub import InferenceClient |
| 35 | + |
| 36 | +def process_meeting_audio(audio_file): |
| 37 | + """Process uploaded audio file and return transcript + summary""" |
| 38 | + if audio_file is None: |
| 39 | + return "Please upload an audio file.", "" |
| 40 | + |
| 41 | + # We'll implement the AI logic next |
| 42 | + return "Transcript will appear here...", "Summary will appear here..." |
| 43 | + |
| 44 | +# Create the Gradio interface |
| 45 | +app = gr.Interface( |
| 46 | + fn=process_meeting_audio, |
| 47 | + inputs=gr.Audio(label="Upload Meeting Audio", type="filepath"), |
| 48 | + outputs=[ |
| 49 | + gr.Textbox(label="Transcript", lines=10), |
| 50 | + gr.Textbox(label="Summary & Action Items", lines=8) |
| 51 | + ], |
| 52 | + title="🎤 AI Meeting Notes", |
| 53 | + description="Upload an audio file to get an instant transcript and summary with action items." |
| 54 | +) |
| 55 | + |
| 56 | +if __name__ == "__main__": |
| 57 | + app.launch() |
| 58 | +``` |
| 59 | + |
| 60 | +Here we're using Gradio's `gr.Audio` component to either upload an audio file or use the microphone input. We're keeping things simple with two outputs: a transcript and a summary with action items. |
| 61 | + |
| 62 | +## Step 3: Add Speech Transcription |
| 63 | + |
| 64 | +Now let's implement the transcription using `fal.ai` and OpenAI's `whisper-large-v3` model for fast, reliable speech processing: |
| 65 | + |
| 66 | +```python |
| 67 | +def transcribe_audio(audio_file_path): |
| 68 | + """Transcribe audio using fal.ai for speed""" |
| 69 | + client = InferenceClient(provider="fal-ai") |
| 70 | + |
| 71 | + # Pass the file path directly - the client handles file reading |
| 72 | + transcript = client.automatic_speech_recognition( |
| 73 | + audio=audio_file_path, |
| 74 | + model="openai/whisper-large-v3" |
| 75 | + ) |
| 76 | + |
| 77 | + return transcript.text |
| 78 | +``` |
| 79 | + |
| 80 | +## Step 4: Add AI Summarization |
| 81 | + |
| 82 | +Next, we'll use a powerful language model like `Qwen/Qwen3-235B-A22B-FP8` from Qwen via Together AI for summarization: |
| 83 | + |
| 84 | +```python |
| 85 | +def generate_summary(transcript): |
| 86 | + """Generate summary using Together AI""" |
| 87 | + client = InferenceClient(provider="together") |
| 88 | + |
| 89 | + prompt = f""" |
| 90 | + Analyze this meeting transcript and provide: |
| 91 | + 1. A concise summary of key points |
| 92 | + 2. Action items with responsible parties |
| 93 | + 3. Important decisions made |
| 94 | + |
| 95 | + Transcript: {transcript} |
| 96 | + |
| 97 | + Format with clear sections: |
| 98 | + ## Summary |
| 99 | + ## Action Items |
| 100 | + ## Decisions Made |
| 101 | + """ |
| 102 | + |
| 103 | + response = client.chat.completions.create( |
| 104 | + model="Qwen/Qwen3-235B-A22B-FP8", |
| 105 | + messages=[{"role": "user", "content": prompt}], |
| 106 | + max_tokens=1000 |
| 107 | + ) |
| 108 | + |
| 109 | + return response.choices[0].message.content |
| 110 | +``` |
| 111 | + |
| 112 | +Note, we're also defining a custom summary prompt to ensure the output is formatted as a summary with action items and decisions made. |
| 113 | + |
| 114 | +## Step 5: Deploy on Hugging Face Spaces |
| 115 | + |
| 116 | +To deploy, we'll need to create a `requirements.txt` file and a `app.py` file. |
| 117 | + |
| 118 | +`requirements.txt`: |
| 119 | + |
| 120 | +```txt |
| 121 | +gradio |
| 122 | +huggingface_hub |
| 123 | +``` |
| 124 | + |
| 125 | +`app.py`: |
| 126 | + |
| 127 | +<details> |
| 128 | +<summary><strong>📋 Click to view the complete app.py file</strong></summary> |
| 129 | + |
| 130 | +```python |
| 131 | +import gradio as gr |
| 132 | +from huggingface_hub import InferenceClient |
| 133 | + |
| 134 | + |
| 135 | +def transcribe_audio(audio_file_path): |
| 136 | + """Transcribe audio using fal.ai for speed""" |
| 137 | + client = InferenceClient(provider="fal-ai") |
| 138 | + |
| 139 | + # Pass the file path directly - the client handles file reading |
| 140 | + transcript = client.automatic_speech_recognition( |
| 141 | + audio=audio_file_path, model="openai/whisper-large-v3" |
| 142 | + ) |
| 143 | + |
| 144 | + return transcript.text |
| 145 | + |
| 146 | + |
| 147 | +def generate_summary(transcript): |
| 148 | + """Generate summary using Together AI""" |
| 149 | + client = InferenceClient(provider="together") |
| 150 | + |
| 151 | + prompt = f""" |
| 152 | + Analyze this meeting transcript and provide: |
| 153 | + 1. A concise summary of key points |
| 154 | + 2. Action items with responsible parties |
| 155 | + 3. Important decisions made |
| 156 | + |
| 157 | + Transcript: {transcript} |
| 158 | + |
| 159 | + Format with clear sections: |
| 160 | + ## Summary |
| 161 | + ## Action Items |
| 162 | + ## Decisions Made |
| 163 | + """ |
| 164 | + |
| 165 | + response = client.chat.completions.create( |
| 166 | + model="Qwen/Qwen3-235B-A22B-FP8", |
| 167 | + messages=[{"role": "user", "content": prompt}], |
| 168 | + max_tokens=1000, |
| 169 | + ) |
| 170 | + |
| 171 | + return response.choices[0].message.content |
| 172 | + |
| 173 | + |
| 174 | +def process_meeting_audio(audio_file): |
| 175 | + """Main processing function""" |
| 176 | + if audio_file is None: |
| 177 | + return "Please upload an audio file.", "" |
| 178 | + |
| 179 | + try: |
| 180 | + # Step 1: Transcribe |
| 181 | + transcript = transcribe_audio(audio_file) |
| 182 | + |
| 183 | + # Step 2: Summarize |
| 184 | + summary = generate_summary(transcript) |
| 185 | + |
| 186 | + return transcript, summary |
| 187 | + |
| 188 | + except Exception as e: |
| 189 | + return f"Error processing audio: {str(e)}", "" |
| 190 | + |
| 191 | + |
| 192 | +# Create Gradio interface |
| 193 | +app = gr.Interface( |
| 194 | + fn=process_meeting_audio, |
| 195 | + inputs=gr.Audio(label="Upload Meeting Audio", type="filepath"), |
| 196 | + outputs=[ |
| 197 | + gr.Textbox(label="Transcript", lines=10), |
| 198 | + gr.Textbox(label="Summary & Action Items", lines=8), |
| 199 | + ], |
| 200 | + title="🎤 AI Meeting Notes", |
| 201 | + description="Upload audio to get instant transcripts and summaries.", |
| 202 | +) |
| 203 | + |
| 204 | +if __name__ == "__main__": |
| 205 | + app.launch() |
| 206 | +``` |
| 207 | + |
| 208 | +</details> |
| 209 | + |
| 210 | +To deploy, we'll need to create a new Space and upload our files. |
| 211 | + |
| 212 | +1. **Create a new Space**: Go to [huggingface.co/new-space](https://huggingface.co/new-space) |
| 213 | +2. **Choose Gradio SDK** and make it public |
| 214 | +3. **Upload your files**: Upload `app.py` and `requirements.txt` |
| 215 | +4. **Add your token**: In Space settings, add `HF_TOKEN` as a secret (get it from [your settings](https://huggingface.co/settings/tokens)) |
| 216 | +5. **Launch**: Your app will be live at `https://huggingface.co/spaces/your-username/your-space-name` |
| 217 | + |
| 218 | +> **Note**: While we used CLI authentication locally, Spaces requires the token as a secret for the deployment environment. |
| 219 | +
|
| 220 | +## Next Steps |
| 221 | + |
| 222 | +Congratulations! You've created a production-ready AI application that: handles real-world tasks, provides a professional interface, scales automatically, and costs efficiently. If you want to explore more providers, you can check out the [Inference Providers](https://huggingface.co/inference-providers) page. Or here are some ideas for next steps: |
| 223 | + |
| 224 | +- **Improve your prompt**: Try different prompts to improve the quality for your use case |
| 225 | +- **Try different models**: Experiment with various speech and text models |
| 226 | +- **Compare performance**: Benchmark speed vs. accuracy across providers |
0 commit comments