@@ -132,36 +132,36 @@ depth = model.infer_image(raw_img) # HxW raw depth map in numpy
132132const diffusers_default = ( model : ModelData ) => [
133133 `from diffusers import DiffusionPipeline
134134
135- pipeline = DiffusionPipeline.from_pretrained("${ model . id } ")
135+ pipe = DiffusionPipeline.from_pretrained("${ model . id } ")
136136
137137prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
138- image = pipeline (prompt).images[0]` ,
138+ image = pipe (prompt).images[0]` ,
139139] ;
140140
141141const diffusers_controlnet = ( model : ModelData ) => [
142142 `from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
143143
144144controlnet = ControlNetModel.from_pretrained("${ model . id } ")
145- pipeline = StableDiffusionControlNetPipeline.from_pretrained(
145+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
146146 "${ get_base_diffusers_model ( model ) } ", controlnet=controlnet
147147)` ,
148148] ;
149149
150150const diffusers_lora = ( model : ModelData ) => [
151151 `from diffusers import DiffusionPipeline
152152
153- pipeline = DiffusionPipeline.from_pretrained("${ get_base_diffusers_model ( model ) } ")
154- pipeline .load_lora_weights("${ model . id } ")
153+ pipe = DiffusionPipeline.from_pretrained("${ get_base_diffusers_model ( model ) } ")
154+ pipe .load_lora_weights("${ model . id } ")
155155
156156prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
157- image = pipeline (prompt).images[0]` ,
157+ image = pipe (prompt).images[0]` ,
158158] ;
159159
160160const diffusers_textual_inversion = ( model : ModelData ) => [
161161 `from diffusers import DiffusionPipeline
162162
163- pipeline = DiffusionPipeline.from_pretrained("${ get_base_diffusers_model ( model ) } ")
164- pipeline .load_textual_inversion("${ model . id } ")`,
163+ pipe = DiffusionPipeline.from_pretrained("${ get_base_diffusers_model ( model ) } ")
164+ pipe .load_textual_inversion("${ model . id } ")`,
165165] ;
166166
167167export const diffusers = ( model : ModelData ) : string [ ] => {
@@ -752,8 +752,8 @@ export const transformers = (model: ModelData): string[] => {
752752 info . processor === "AutoTokenizer"
753753 ? "tokenizer"
754754 : info . processor === "AutoFeatureExtractor"
755- ? "extractor"
756- : "processor" ;
755+ ? "extractor"
756+ : "processor" ;
757757 autoSnippet = [
758758 "# Load model directly" ,
759759 `from transformers import ${ info . processor } , ${ info . auto_model } ` ,
0 commit comments