Commit e8964e1
authored
Export jinja files as TS module at build time (#1296)
This PR should fix
huggingface-internal/moon-landing#13013. It
partially removes the structure introduced in
#1255.
Current problem is that inference snippets are generated in the
front-end. Since front-end cannot access file-system and therefore the
jinja files, we have to find a workaround. This PR adds a build step
which exports all jinja files into a single TS module. I've updated the
`package.json` file so that now the snippets code should be available in
any environment (both node and browser).
cc @coyotte508 who suggested such a solution.
Tested it in `@tasks-gen` and "it works"
---
For the record, the exported file (not committed in this PR) looks like
this:
_# packages/inference/src/snippets/templates.exported.ts_
```ts
// Generated file - do not edit directly
export const templates: Record<string, Record<string, Record<string, string>>> = {
"js": {
"fetch": {
"basic": "async function query(data) {\n\tconst response = await fetch(\n\t\t\"{{ fullUrl }}\",\n\t\t{\n\t\t\theaders: {\n\t\t\t\tAuthorization: \"{{ authorizationHeader }}\",\n\t\t\t\t\"Content-Type\": \"application/json\",\n\t\t\t},\n\t\t\tmethod: \"POST\",\n\t\t\tbody: JSON.stringify(data),\n\t\t}\n\t);\n\tconst result = await response.json();\n\treturn result;\n}\n\nquery({ inputs: {{ providerInputs.asObj.inputs }} }).then((response) => {\n console.log(JSON.stringify(response));\n});",
"basicAudio": "async function query(data) {\n\tconst response = await fetch(\n\t\t\"{{ fullUrl }}\",\n\t\t{\n\t\t\theaders: {\n\t\t\t\tAuthorization: \"{{ authorizationHeader }}\",\n\t\t\t\t\"Content-Type\": \"audio/flac\"\n\t\t\t},\n\t\t\tmethod: \"POST\",\n\t\t\tbody: JSON.stringify(data),\n\t\t}\n\t);\n\tconst result = await response.json();\n\treturn result;\n}\n\nquery({ inputs: {{ providerInputs.asObj.inputs }} }).then((response) => {\n console.log(JSON.stringify(response));\n});",
"basicImage": "async function query(data) {\n\tconst response = await fetch(\n\t\t\"{{ fullUrl }}\",\n\t\t{\n\t\t\theaders: {\n\t\t\t\tAuthorization: \"{{ authorizationHeader }}\",\n\t\t\t\t\"Content-Type\": \"image/jpeg\"\n\t\t\t},\n\t\t\tmethod: \"POST\",\n\t\t\tbody: JSON.stringify(data),\n\t\t}\n\t);\n\tconst result = await response.json();\n\treturn result;\n}\n\nquery({ inputs: {{ providerInputs.asObj.inputs }} }).then((response) => {\n console.log(JSON.stringify(response));\n});",
"textToAudio": "{% if model.library_name == \"transformers\" %}\nasync function query(data) {\n\tconst response = await fetch(\n\t\t\"{{ fullUrl }}\",\n\t\t{\n\t\t\theaders: {\n\t\t\t\tAuthorization: \"{{ authorizationHeader }}\",\n\t\t\t\t\"Content-Type\": \"application/json\",\n\t\t\t},\n\t\t\tmethod: \"POST\",\n\t\t\tbody: JSON.stringify(data),\n\t\t}\n\t);\n\tconst result = await response.blob();\n return result;\n}\n\nquery({ inputs: {{ providerInputs.asObj.inputs }} }).then((response) => {\n // Returns a byte object of the Audio wavform. Use it directly!\n});\n{% else %}\nasync function query(data) {\n\tconst response = await fetch(\n\t\t\"{{ fullUrl }}\",\n\t\t{\n\t\t\theaders: {\n\t\t\t\tAuthorization: \"{{ authorizationHeader }}\",\n\t\t\t\t\"Content-Type\": \"application/json\",\n\t\t\t},\n\t\t\tmethod: \"POST\",\n\t\t\tbody: JSON.stringify(data),\n\t\t}\n\t);\n const result = await response.json();\n return result;\n}\n\nquery({ inputs: {{ providerInputs.asObj.inputs }} }).then((response) => {\n console.log(JSON.stringify(response));\n});\n{% endif %} ",
"textToImage": "async function query(data) {\n\tconst response = await fetch(\n\t\t\"{{ fullUrl }}\",\n\t\t{\n\t\t\theaders: {\n\t\t\t\tAuthorization: \"{{ authorizationHeader }}\",\n\t\t\t\t\"Content-Type\": \"application/json\",\n\t\t\t},\n\t\t\tmethod: \"POST\",\n\t\t\tbody: JSON.stringify(data),\n\t\t}\n\t);\n\tconst result = await response.blob();\n\treturn result;\n}\n\nquery({ inputs: {{ providerInputs.asObj.inputs }} }).then((response) => {\n // Use image\n});",
"zeroShotClassification": "async function query(data) {\n const response = await fetch(\n\t\t\"{{ fullUrl }}\",\n {\n headers: {\n\t\t\t\tAuthorization: \"{{ authorizationHeader }}\",\n \"Content-Type\": \"application/json\",\n },\n method: \"POST\",\n body: JSON.stringify(data),\n }\n );\n const result = await response.json();\n return result;\n}\n\nquery({\n inputs: {{ providerInputs.asObj.inputs }},\n parameters: { candidate_labels: [\"refund\", \"legal\", \"faq\"] }\n}).then((response) => {\n console.log(JSON.stringify(response));\n});"
},
"huggingface.js": {
"basic": "import { InferenceClient } from \"@huggingface/inference\";\n\nconst client = new InferenceClient(\"{{ accessToken }}\");\n\nconst output = await client.{{ methodName }}({\n\tmodel: \"{{ model.id }}\",\n\tinputs: {{ inputs.asObj.inputs }},\n\tprovider: \"{{ provider }}\",\n});\n\nconsole.log(output);",
"basicAudio": "import { InferenceClient } from \"@huggingface/inference\";\n\nconst client = new InferenceClient(\"{{ accessToken }}\");\n\nconst data = fs.readFileSync({{inputs.asObj.inputs}});\n\nconst output = await client.{{ methodName }}({\n\tdata,\n\tmodel: \"{{ model.id }}\",\n\tprovider: \"{{ provider }}\",\n});\n\nconsole.log(output);",
"basicImage": "import { InferenceClient } from \"@huggingface/inference\";\n\nconst client = new InferenceClient(\"{{ accessToken }}\");\n\nconst data = fs.readFileSync({{inputs.asObj.inputs}});\n\nconst output = await client.{{ methodName }}({\n\tdata,\n\tmodel: \"{{ model.id }}\",\n\tprovider: \"{{ provider }}\",\n});\n\nconsole.log(output);",
"conversational": "import { InferenceClient } from \"@huggingface/inference\";\n\nconst client = new InferenceClient(\"{{ accessToken }}\");\n\nconst chatCompletion = await client.chatCompletion({\n provider: \"{{ provider }}\",\n model: \"{{ model.id }}\",\n{{ inputs.asTsString }}\n});\n\nconsole.log(chatCompletion.choices[0].message);",
"conversationalStream": "import { InferenceClient } from \"@huggingface/inference\";\n\nconst client = new InferenceClient(\"{{ accessToken }}\");\n\nlet out = \"\";\n\nconst stream = await client.chatCompletionStream({\n provider: \"{{ provider }}\",\n model: \"{{ model.id }}\",\n{{ inputs.asTsString }}\n});\n\nfor await (const chunk of stream) {\n\tif (chunk.choices && chunk.choices.length > 0) {\n\t\tconst newContent = chunk.choices[0].delta.content;\n\t\tout += newContent;\n\t\tconsole.log(newContent);\n\t} \n}",
"textToImage": "import { InferenceClient } from \"@huggingface/inference\";\n\nconst client = new InferenceClient(\"{{ accessToken }}\");\n\nconst image = await client.textToImage({\n provider: \"{{ provider }}\",\n model: \"{{ model.id }}\",\n\tinputs: {{ inputs.asObj.inputs }},\n\tparameters: { num_inference_steps: 5 },\n});\n/// Use the generated image (it's a Blob)",
"textToVideo": "import { InferenceClient } from \"@huggingface/inference\";\n\nconst client = new InferenceClient(\"{{ accessToken }}\");\n\nconst image = await client.textToVideo({\n provider: \"{{ provider }}\",\n model: \"{{ model.id }}\",\n\tinputs: {{ inputs.asObj.inputs }},\n});\n// Use the generated video (it's a Blob)"
},
"openai": {
"conversational": "import { OpenAI } from \"openai\";\n\nconst client = new OpenAI({\n\tbaseURL: \"{{ baseUrl }}\",\n\tapiKey: \"{{ accessToken }}\",\n});\n\nconst chatCompletion = await client.chat.completions.create({\n\tmodel: \"{{ providerModelId }}\",\n{{ inputs.asTsString }}\n});\n\nconsole.log(chatCompletion.choices[0].message);",
"conversationalStream": "import { OpenAI } from \"openai\";\n\nconst client = new OpenAI({\n\tbaseURL: \"{{ baseUrl }}\",\n\tapiKey: \"{{ accessToken }}\",\n});\n\nlet out = \"\";\n\nconst stream = await client.chat.completions.create({\n provider: \"{{ provider }}\",\n model: \"{{ model.id }}\",\n{{ inputs.asTsString }}\n});\n\nfor await (const chunk of stream) {\n\tif (chunk.choices && chunk.choices.length > 0) {\n\t\tconst newContent = chunk.choices[0].delta.content;\n\t\tout += newContent;\n\t\tconsole.log(newContent);\n\t} \n}"
}
},
"python": {
"fal_client": {
"textToImage": "{% if provider == \"fal-ai\" %}\nimport fal_client\n\nresult = fal_client.subscribe(\n \"{{ providerModelId }}\",\n arguments={\n \"prompt\": {{ inputs.asObj.inputs }},\n },\n)\nprint(result)\n{% endif %} "
},
"huggingface_hub": {
"basic": "result = client.{{ methodName }}(\n inputs={{ inputs.asObj.inputs }},\n model=\"{{ model.id }}\",\n)",
"basicAudio": "output = client.{{ methodName }}({{ inputs.asObj.inputs }}, model=\"{{ model.id }}\")",
"basicImage": "output = client.{{ methodName }}({{ inputs.asObj.inputs }}, model=\"{{ model.id }}\")",
"conversational": "completion = client.chat.completions.create(\n model=\"{{ model.id }}\",\n{{ inputs.asPythonString }}\n)\n\nprint(completion.choices[0].message) ",
"conversationalStream": "stream = client.chat.completions.create(\n model=\"{{ model.id }}\",\n{{ inputs.asPythonString }}\n stream=True,\n)\n\nfor chunk in stream:\n print(chunk.choices[0].delta.content, end=\"\") ",
"documentQuestionAnswering": "output = client.document_question_answering(\n \"{{ inputs.asObj.image }}\",\n question=\"{{ inputs.asObj.question }}\",\n model=\"{{ model.id }}\",\n) ",
"imageToImage": "# output is a PIL.Image object\nimage = client.image_to_image(\n \"{{ inputs.asObj.inputs }}\",\n prompt=\"{{ inputs.asObj.parameters.prompt }}\",\n model=\"{{ model.id }}\",\n) ",
"importInferenceClient": "from huggingface_hub import InferenceClient\n\nclient = InferenceClient(\n provider=\"{{ provider }}\",\n api_key=\"{{ accessToken }}\",\n)",
"textToImage": "# output is a PIL.Image object\nimage = client.text_to_image(\n {{ inputs.asObj.inputs }},\n model=\"{{ model.id }}\",\n) ",
"textToVideo": "video = client.text_to_video(\n {{ inputs.asObj.inputs }},\n model=\"{{ model.id }}\",\n) "
},
"openai": {
"conversational": "from openai import OpenAI\n\nclient = OpenAI(\n base_url=\"{{ baseUrl }}\",\n api_key=\"{{ accessToken }}\"\n)\n\ncompletion = client.chat.completions.create(\n model=\"{{ providerModelId }}\",\n{{ inputs.asPythonString }}\n)\n\nprint(completion.choices[0].message) ",
"conversationalStream": "from openai import OpenAI\n\nclient = OpenAI(\n base_url=\"{{ baseUrl }}\",\n api_key=\"{{ accessToken }}\"\n)\n\nstream = client.chat.completions.create(\n model=\"{{ providerModelId }}\",\n{{ inputs.asPythonString }}\n stream=True,\n)\n\nfor chunk in stream:\n print(chunk.choices[0].delta.content, end=\"\")"
},
"requests": {
"basic": "def query(payload):\n response = requests.post(API_URL, headers=headers, json=payload)\n return response.json()\n\noutput = query({\n \"inputs\": {{ providerInputs.asObj.inputs }},\n}) ",
"basicAudio": "def query(filename):\n with open(filename, \"rb\") as f:\n data = f.read()\n response = requests.post(API_URL, headers={\"Content-Type\": \"audio/flac\", **headers}, data=data)\n return response.json()\n\noutput = query({{ providerInputs.asObj.inputs }})",
"basicImage": "def query(filename):\n with open(filename, \"rb\") as f:\n data = f.read()\n response = requests.post(API_URL, headers={\"Content-Type\": \"image/jpeg\", **headers}, data=data)\n return response.json()\n\noutput = query({{ providerInputs.asObj.inputs }})",
"conversational": "def query(payload):\n response = requests.post(API_URL, headers=headers, json=payload)\n return response.json()\n\nresponse = query({\n{{ providerInputs.asJsonString }}\n})\n\nprint(response[\"choices\"][0][\"message\"])",
"conversationalStream": "def query(payload):\n response = requests.post(API_URL, headers=headers, json=payload, stream=True)\n for line in response.iter_lines():\n if not line.startswith(b\"data:\"):\n continue\n if line.strip() == b\"data: [DONE]\":\n return\n yield json.loads(line.decode(\"utf-8\").lstrip(\"data:\").rstrip(\"/n\"))\n\nchunks = query({\n{{ providerInputs.asJsonString }},\n \"stream\": True,\n})\n\nfor chunk in chunks:\n print(chunk[\"choices\"][0][\"delta\"][\"content\"], end=\"\")",
"documentQuestionAnswering": "def query(payload):\n with open(payload[\"image\"], \"rb\") as f:\n img = f.read()\n payload[\"image\"] = base64.b64encode(img).decode(\"utf-8\")\n response = requests.post(API_URL, headers=headers, json=payload)\n return response.json()\n\noutput = query({\n \"inputs\": {\n \"image\": \"{{ inputs.asObj.image }}\",\n \"question\": \"{{ inputs.asObj.question }}\",\n },\n}) ",
"imageToImage": "def query(payload):\n with open(payload[\"inputs\"], \"rb\") as f:\n img = f.read()\n payload[\"inputs\"] = base64.b64encode(img).decode(\"utf-8\")\n response = requests.post(API_URL, headers=headers, json=payload)\n return response.content\n\nimage_bytes = query({\n{{ providerInputs.asJsonString }}\n})\n\n# You can access the image with PIL.Image for example\nimport io\nfrom PIL import Image\nimage = Image.open(io.BytesIO(image_bytes)) ",
"importRequests": "{% if importBase64 %}\nimport base64\n{% endif %}\n{% if importJson %}\nimport json\n{% endif %}\nimport requests\n\nAPI_URL = \"{{ fullUrl }}\"\nheaders = {\"Authorization\": \"{{ authorizationHeader }}\"}",
"tabular": "def query(payload):\n response = requests.post(API_URL, headers=headers, json=payload)\n return response.content\n\nresponse = query({\n \"inputs\": {\n \"data\": {{ providerInputs.asObj.inputs }}\n },\n}) ",
"textToAudio": "{% if model.library_name == \"transformers\" %}\ndef query(payload):\n response = requests.post(API_URL, headers=headers, json=payload)\n return response.content\n\naudio_bytes = query({\n \"inputs\": {{ providerInputs.asObj.inputs }},\n})\n# You can access the audio with IPython.display for example\nfrom IPython.display import Audio\nAudio(audio_bytes)\n{% else %}\ndef query(payload):\n response = requests.post(API_URL, headers=headers, json=payload)\n return response.json()\n\naudio, sampling_rate = query({\n \"inputs\": {{ providerInputs.asObj.inputs }},\n})\n# You can access the audio with IPython.display for example\nfrom IPython.display import Audio\nAudio(audio, rate=sampling_rate)\n{% endif %} ",
"textToImage": "{% if provider == \"hf-inference\" %}\ndef query(payload):\n response = requests.post(API_URL, headers=headers, json=payload)\n return response.content\n\nimage_bytes = query({\n \"inputs\": {{ providerInputs.asObj.inputs }},\n})\n\n# You can access the image with PIL.Image for example\nimport io\nfrom PIL import Image\nimage = Image.open(io.BytesIO(image_bytes))\n{% endif %}",
"zeroShotClassification": "def query(payload):\n response = requests.post(API_URL, headers=headers, json=payload)\n return response.json()\n\noutput = query({\n \"inputs\": {{ providerInputs.asObj.inputs }},\n \"parameters\": {\"candidate_labels\": [\"refund\", \"legal\", \"faq\"]},\n}) ",
"zeroShotImageClassification": "def query(data):\n with open(data[\"image_path\"], \"rb\") as f:\n img = f.read()\n payload={\n \"parameters\": data[\"parameters\"],\n \"inputs\": base64.b64encode(img).decode(\"utf-8\")\n }\n response = requests.post(API_URL, headers=headers, json=payload)\n return response.json()\n\noutput = query({\n \"image_path\": {{ providerInputs.asObj.inputs }},\n \"parameters\": {\"candidate_labels\": [\"cat\", \"dog\", \"llama\"]},\n}) "
}
},
"sh": {
"curl": {
"basic": "curl {{ fullUrl }} \\\n -X POST \\\n -H 'Authorization: {{ authorizationHeader }}' \\\n -H 'Content-Type: application/json' \\\n -d '{\n{{ providerInputs.asCurlString }}\n }'",
"basicAudio": "curl {{ fullUrl }} \\\n -X POST \\\n -H 'Authorization: {{ authorizationHeader }}' \\\n -H 'Content-Type: audio/flac' \\\n --data-binary @{{ providerInputs.asObj.inputs }}",
"basicImage": "curl {{ fullUrl }} \\\n -X POST \\\n -H 'Authorization: {{ authorizationHeader }}' \\\n -H 'Content-Type: image/jpeg' \\\n --data-binary @{{ providerInputs.asObj.inputs }}",
"conversational": "curl {{ fullUrl }} \\\n -H 'Authorization: {{ authorizationHeader }}' \\\n -H 'Content-Type: application/json' \\\n -d '{\n{{ providerInputs.asCurlString }},\n \"stream\": false\n }'",
"conversationalStream": "curl {{ fullUrl }} \\\n -H 'Authorization: {{ authorizationHeader }}' \\\n -H 'Content-Type: application/json' \\\n -d '{\n{{ providerInputs.asCurlString }},\n \"stream\": true\n }'",
"zeroShotClassification": "curl {{ fullUrl }} \\\n -X POST \\\n -d '{\"inputs\": {{ providerInputs.asObj.inputs }}, \"parameters\": {\"candidate_labels\": [\"refund\", \"legal\", \"faq\"]}}' \\\n -H 'Content-Type: application/json' \\\n -H 'Authorization: {{ authorizationHeader }}'"
}
}
} as const;
```1 parent b6f3c06 commit e8964e1
File tree
5 files changed
+69
-60
lines changed- packages/inference
- scripts
- src/snippets
5 files changed
+69
-60
lines changed| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
| 1 | + | |
| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
26 | 26 | | |
27 | 27 | | |
28 | 28 | | |
29 | | - | |
| 29 | + | |
| 30 | + | |
30 | 31 | | |
31 | 32 | | |
32 | 33 | | |
33 | 34 | | |
34 | 35 | | |
35 | 36 | | |
36 | | - | |
37 | | - | |
38 | | - | |
39 | | - | |
40 | | - | |
41 | | - | |
42 | | - | |
43 | | - | |
44 | | - | |
45 | | - | |
| 37 | + | |
| 38 | + | |
| 39 | + | |
46 | 40 | | |
47 | 41 | | |
48 | 42 | | |
49 | | - | |
| 43 | + | |
50 | 44 | | |
51 | 45 | | |
52 | 46 | | |
| |||
57 | 51 | | |
58 | 52 | | |
59 | 53 | | |
60 | | - | |
| 54 | + | |
| 55 | + | |
61 | 56 | | |
62 | 57 | | |
63 | 58 | | |
| |||
| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
| 1 | + | |
| 2 | + | |
| 3 | + | |
| 4 | + | |
| 5 | + | |
| 6 | + | |
| 7 | + | |
| 8 | + | |
| 9 | + | |
| 10 | + | |
| 11 | + | |
| 12 | + | |
| 13 | + | |
| 14 | + | |
| 15 | + | |
| 16 | + | |
| 17 | + | |
| 18 | + | |
| 19 | + | |
| 20 | + | |
| 21 | + | |
| 22 | + | |
| 23 | + | |
| 24 | + | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | + | |
| 29 | + | |
| 30 | + | |
| 31 | + | |
| 32 | + | |
| 33 | + | |
| 34 | + | |
| 35 | + | |
| 36 | + | |
| 37 | + | |
| 38 | + | |
| 39 | + | |
| 40 | + | |
| 41 | + | |
| 42 | + | |
| 43 | + | |
| 44 | + | |
| 45 | + | |
| 46 | + | |
| 47 | + | |
| 48 | + | |
| 49 | + | |
| 50 | + | |
| 51 | + | |
| 52 | + | |
| 53 | + | |
| 54 | + | |
| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
10 | 10 | | |
11 | 11 | | |
12 | 12 | | |
13 | | - | |
14 | | - | |
15 | | - | |
| 13 | + | |
16 | 14 | | |
17 | 15 | | |
18 | 16 | | |
| |||
44 | 42 | | |
45 | 43 | | |
46 | 44 | | |
47 | | - | |
48 | | - | |
49 | | - | |
50 | | - | |
51 | | - | |
52 | | - | |
53 | | - | |
54 | | - | |
55 | | - | |
56 | | - | |
57 | | - | |
58 | | - | |
59 | | - | |
60 | | - | |
61 | | - | |
62 | | - | |
63 | | - | |
64 | | - | |
65 | | - | |
66 | 45 | | |
67 | | - | |
| 46 | + | |
68 | 47 | | |
69 | 48 | | |
70 | 49 | | |
71 | 50 | | |
72 | 51 | | |
73 | 52 | | |
74 | | - | |
| 53 | + | |
| 54 | + | |
| 55 | + | |
| 56 | + | |
75 | 57 | | |
76 | 58 | | |
77 | 59 | | |
| |||
This file was deleted.
0 commit comments