|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Asymmetric tiling\n", |
| 8 | + "\n", |
| 9 | + "Stable Diffusion is not trained to generate seamless textures. However, you can use this simple script to add tiling to your generation. This script is contributed by [alexisrolland](https://github.com/alexisrolland). See more details in the [this issue](https://github.com/huggingface/diffusers/issues/556)." |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": 2, |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [ |
| 17 | + { |
| 18 | + "name": "stdout", |
| 19 | + "output_type": "stream", |
| 20 | + "text": [ |
| 21 | + "Requirement already satisfied: diffusers in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (0.31.0)\n", |
| 22 | + "Requirement already satisfied: torch in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (2.2.1+cu121)\n", |
| 23 | + "Requirement already satisfied: accelerate in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (1.1.1)\n", |
| 24 | + "Requirement already satisfied: transformers in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (4.46.2)\n", |
| 25 | + "Requirement already satisfied: importlib-metadata in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from diffusers) (8.5.0)\n", |
| 26 | + "Requirement already satisfied: filelock in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from diffusers) (3.16.1)\n", |
| 27 | + "Requirement already satisfied: huggingface-hub>=0.23.2 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from diffusers) (0.26.2)\n", |
| 28 | + "Requirement already satisfied: numpy in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from diffusers) (1.26.4)\n", |
| 29 | + "Requirement already satisfied: regex!=2019.12.17 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from diffusers) (2024.11.6)\n", |
| 30 | + "Requirement already satisfied: requests in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from diffusers) (2.32.3)\n", |
| 31 | + "Requirement already satisfied: safetensors>=0.3.1 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from diffusers) (0.4.5)\n", |
| 32 | + "Requirement already satisfied: Pillow in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from diffusers) (11.0.0)\n", |
| 33 | + "Requirement already satisfied: typing-extensions>=4.8.0 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (4.12.2)\n", |
| 34 | + "Requirement already satisfied: sympy in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (1.13.3)\n", |
| 35 | + "Requirement already satisfied: networkx in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (3.4.2)\n", |
| 36 | + "Requirement already satisfied: jinja2 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (3.1.4)\n", |
| 37 | + "Requirement already satisfied: fsspec in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (2024.10.0)\n", |
| 38 | + "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (12.1.105)\n", |
| 39 | + "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (12.1.105)\n", |
| 40 | + "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (12.1.105)\n", |
| 41 | + "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (8.9.2.26)\n", |
| 42 | + "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (12.1.3.1)\n", |
| 43 | + "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (11.0.2.54)\n", |
| 44 | + "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (10.3.2.106)\n", |
| 45 | + "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (11.4.5.107)\n", |
| 46 | + "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (12.1.0.106)\n", |
| 47 | + "Requirement already satisfied: nvidia-nccl-cu12==2.19.3 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (2.19.3)\n", |
| 48 | + "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (12.1.105)\n", |
| 49 | + "Requirement already satisfied: triton==2.2.0 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from torch) (2.2.0)\n", |
| 50 | + "Requirement already satisfied: nvidia-nvjitlink-cu12 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch) (12.6.77)\n", |
| 51 | + "Requirement already satisfied: packaging>=20.0 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from accelerate) (24.1)\n", |
| 52 | + "Requirement already satisfied: psutil in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from accelerate) (6.1.0)\n", |
| 53 | + "Requirement already satisfied: pyyaml in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from accelerate) (6.0.2)\n", |
| 54 | + "Requirement already satisfied: tokenizers<0.21,>=0.20 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from transformers) (0.20.3)\n", |
| 55 | + "Requirement already satisfied: tqdm>=4.27 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from transformers) (4.66.6)\n", |
| 56 | + "Requirement already satisfied: zipp>=3.20 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from importlib-metadata->diffusers) (3.21.0)\n", |
| 57 | + "Requirement already satisfied: MarkupSafe>=2.0 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from jinja2->torch) (3.0.2)\n", |
| 58 | + "Requirement already satisfied: charset-normalizer<4,>=2 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from requests->diffusers) (3.4.0)\n", |
| 59 | + "Requirement already satisfied: idna<4,>=2.5 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from requests->diffusers) (3.10)\n", |
| 60 | + "Requirement already satisfied: urllib3<3,>=1.21.1 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from requests->diffusers) (2.2.3)\n", |
| 61 | + "Requirement already satisfied: certifi>=2017.4.17 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from requests->diffusers) (2024.8.30)\n", |
| 62 | + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages (from sympy->torch) (1.3.0)\n", |
| 63 | + "Note: you may need to restart the kernel to use updated packages.\n" |
| 64 | + ] |
| 65 | + } |
| 66 | + ], |
| 67 | + "source": [ |
| 68 | + "pip install diffusers torch accelerate transformers" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": 3, |
| 74 | + "metadata": {}, |
| 75 | + "outputs": [], |
| 76 | + "source": [ |
| 77 | + "import torch\n", |
| 78 | + "from typing import Optional\n", |
| 79 | + "from diffusers import StableDiffusionPipeline\n", |
| 80 | + "from diffusers.models.lora import LoRACompatibleConv\n", |
| 81 | + "\n", |
| 82 | + "def seamless_tiling(pipeline, x_axis, y_axis):\n", |
| 83 | + " def asymmetric_conv2d_convforward(self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):\n", |
| 84 | + " self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)\n", |
| 85 | + " self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])\n", |
| 86 | + " working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)\n", |
| 87 | + " working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)\n", |
| 88 | + " return torch.nn.functional.conv2d(working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups)\n", |
| 89 | + " x_mode = 'circular' if x_axis else 'constant'\n", |
| 90 | + " y_mode = 'circular' if y_axis else 'constant'\n", |
| 91 | + " targets = [pipeline.vae, pipeline.text_encoder, pipeline.unet]\n", |
| 92 | + " convolution_layers = []\n", |
| 93 | + " for target in targets:\n", |
| 94 | + " for module in target.modules():\n", |
| 95 | + " if isinstance(module, torch.nn.Conv2d):\n", |
| 96 | + " convolution_layers.append(module)\n", |
| 97 | + " for layer in convolution_layers:\n", |
| 98 | + " if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:\n", |
| 99 | + " layer.lora_layer = lambda * x: 0\n", |
| 100 | + " layer._conv_forward = asymmetric_conv2d_convforward.__get__(layer, torch.nn.Conv2d)\n", |
| 101 | + " return pipeline\n" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": 4, |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [ |
| 109 | + { |
| 110 | + "data": { |
| 111 | + "application/vnd.jupyter.widget-view+json": { |
| 112 | + "model_id": "1fe7c93d4c284a3dbea050bb32b4fdbb", |
| 113 | + "version_major": 2, |
| 114 | + "version_minor": 0 |
| 115 | + }, |
| 116 | + "text/plain": [ |
| 117 | + "model_index.json: 0%| | 0.00/541 [00:00<?, ?B/s]" |
| 118 | + ] |
| 119 | + }, |
| 120 | + "metadata": {}, |
| 121 | + "output_type": "display_data" |
| 122 | + }, |
| 123 | + { |
| 124 | + "data": { |
| 125 | + "application/vnd.jupyter.widget-view+json": { |
| 126 | + "model_id": "800df14452064af0a3b5b350bcff79b3", |
| 127 | + "version_major": 2, |
| 128 | + "version_minor": 0 |
| 129 | + }, |
| 130 | + "text/plain": [ |
| 131 | + "Fetching 15 files: 0%| | 0/15 [00:00<?, ?it/s]" |
| 132 | + ] |
| 133 | + }, |
| 134 | + "metadata": {}, |
| 135 | + "output_type": "display_data" |
| 136 | + }, |
| 137 | + { |
| 138 | + "data": { |
| 139 | + "application/vnd.jupyter.widget-view+json": { |
| 140 | + "model_id": "035b3e663c9b4645a1849e4e44ad18d2", |
| 141 | + "version_major": 2, |
| 142 | + "version_minor": 0 |
| 143 | + }, |
| 144 | + "text/plain": [ |
| 145 | + "(…)ature_extractor/preprocessor_config.json: 0%| | 0.00/342 [00:00<?, ?B/s]" |
| 146 | + ] |
| 147 | + }, |
| 148 | + "metadata": {}, |
| 149 | + "output_type": "display_data" |
| 150 | + }, |
| 151 | + { |
| 152 | + "data": { |
| 153 | + "application/vnd.jupyter.widget-view+json": { |
| 154 | + "model_id": "5365d546370d4c62bf2d43b95f989a1a", |
| 155 | + "version_major": 2, |
| 156 | + "version_minor": 0 |
| 157 | + }, |
| 158 | + "text/plain": [ |
| 159 | + "tokenizer/merges.txt: 0%| | 0.00/525k [00:00<?, ?B/s]" |
| 160 | + ] |
| 161 | + }, |
| 162 | + "metadata": {}, |
| 163 | + "output_type": "display_data" |
| 164 | + }, |
| 165 | + { |
| 166 | + "data": { |
| 167 | + "application/vnd.jupyter.widget-view+json": { |
| 168 | + "model_id": "84a7505fdf7644898774be25a69ba8a0", |
| 169 | + "version_major": 2, |
| 170 | + "version_minor": 0 |
| 171 | + }, |
| 172 | + "text/plain": [ |
| 173 | + "text_encoder/config.json: 0%| | 0.00/617 [00:00<?, ?B/s]" |
| 174 | + ] |
| 175 | + }, |
| 176 | + "metadata": {}, |
| 177 | + "output_type": "display_data" |
| 178 | + }, |
| 179 | + { |
| 180 | + "data": { |
| 181 | + "application/vnd.jupyter.widget-view+json": { |
| 182 | + "model_id": "8f5e0949ad264122a95f7a9f3fc6a592", |
| 183 | + "version_major": 2, |
| 184 | + "version_minor": 0 |
| 185 | + }, |
| 186 | + "text/plain": [ |
| 187 | + "tokenizer/special_tokens_map.json: 0%| | 0.00/472 [00:00<?, ?B/s]" |
| 188 | + ] |
| 189 | + }, |
| 190 | + "metadata": {}, |
| 191 | + "output_type": "display_data" |
| 192 | + }, |
| 193 | + { |
| 194 | + "data": { |
| 195 | + "application/vnd.jupyter.widget-view+json": { |
| 196 | + "model_id": "7154fe0ee6964d4dabd7faad9ab2f91e", |
| 197 | + "version_major": 2, |
| 198 | + "version_minor": 0 |
| 199 | + }, |
| 200 | + "text/plain": [ |
| 201 | + "model.safetensors: 0%| | 0.00/1.22G [00:00<?, ?B/s]" |
| 202 | + ] |
| 203 | + }, |
| 204 | + "metadata": {}, |
| 205 | + "output_type": "display_data" |
| 206 | + }, |
| 207 | + { |
| 208 | + "data": { |
| 209 | + "application/vnd.jupyter.widget-view+json": { |
| 210 | + "model_id": "e3445255cac2477dab44e7637ed78bd2", |
| 211 | + "version_major": 2, |
| 212 | + "version_minor": 0 |
| 213 | + }, |
| 214 | + "text/plain": [ |
| 215 | + "model.safetensors: 0%| | 0.00/492M [00:00<?, ?B/s]" |
| 216 | + ] |
| 217 | + }, |
| 218 | + "metadata": {}, |
| 219 | + "output_type": "display_data" |
| 220 | + }, |
| 221 | + { |
| 222 | + "data": { |
| 223 | + "application/vnd.jupyter.widget-view+json": { |
| 224 | + "model_id": "a6814bb5f88c42e8a16d627d3414dffa", |
| 225 | + "version_major": 2, |
| 226 | + "version_minor": 0 |
| 227 | + }, |
| 228 | + "text/plain": [ |
| 229 | + "scheduler/scheduler_config.json: 0%| | 0.00/308 [00:00<?, ?B/s]" |
| 230 | + ] |
| 231 | + }, |
| 232 | + "metadata": {}, |
| 233 | + "output_type": "display_data" |
| 234 | + }, |
| 235 | + { |
| 236 | + "data": { |
| 237 | + "application/vnd.jupyter.widget-view+json": { |
| 238 | + "model_id": "de3e32d444b140dc88cec7205e7d20f8", |
| 239 | + "version_major": 2, |
| 240 | + "version_minor": 0 |
| 241 | + }, |
| 242 | + "text/plain": [ |
| 243 | + "safety_checker/config.json: 0%| | 0.00/4.72k [00:00<?, ?B/s]" |
| 244 | + ] |
| 245 | + }, |
| 246 | + "metadata": {}, |
| 247 | + "output_type": "display_data" |
| 248 | + }, |
| 249 | + { |
| 250 | + "data": { |
| 251 | + "application/vnd.jupyter.widget-view+json": { |
| 252 | + "model_id": "d38e12cc00ee4175b6ac61934c50a790", |
| 253 | + "version_major": 2, |
| 254 | + "version_minor": 0 |
| 255 | + }, |
| 256 | + "text/plain": [ |
| 257 | + "tokenizer/tokenizer_config.json: 0%| | 0.00/806 [00:00<?, ?B/s]" |
| 258 | + ] |
| 259 | + }, |
| 260 | + "metadata": {}, |
| 261 | + "output_type": "display_data" |
| 262 | + }, |
| 263 | + { |
| 264 | + "data": { |
| 265 | + "application/vnd.jupyter.widget-view+json": { |
| 266 | + "model_id": "e6ef50cc68f0495a8ab0a859aa8846c6", |
| 267 | + "version_major": 2, |
| 268 | + "version_minor": 0 |
| 269 | + }, |
| 270 | + "text/plain": [ |
| 271 | + "unet/config.json: 0%| | 0.00/743 [00:00<?, ?B/s]" |
| 272 | + ] |
| 273 | + }, |
| 274 | + "metadata": {}, |
| 275 | + "output_type": "display_data" |
| 276 | + }, |
| 277 | + { |
| 278 | + "data": { |
| 279 | + "application/vnd.jupyter.widget-view+json": { |
| 280 | + "model_id": "fd2df9b13391492b81ebaabada3564a9", |
| 281 | + "version_major": 2, |
| 282 | + "version_minor": 0 |
| 283 | + }, |
| 284 | + "text/plain": [ |
| 285 | + "tokenizer/vocab.json: 0%| | 0.00/1.06M [00:00<?, ?B/s]" |
| 286 | + ] |
| 287 | + }, |
| 288 | + "metadata": {}, |
| 289 | + "output_type": "display_data" |
| 290 | + }, |
| 291 | + { |
| 292 | + "data": { |
| 293 | + "application/vnd.jupyter.widget-view+json": { |
| 294 | + "model_id": "e61f198fcefe470b997a5368f6d6a432", |
| 295 | + "version_major": 2, |
| 296 | + "version_minor": 0 |
| 297 | + }, |
| 298 | + "text/plain": [ |
| 299 | + "diffusion_pytorch_model.safetensors: 0%| | 0.00/3.44G [00:00<?, ?B/s]" |
| 300 | + ] |
| 301 | + }, |
| 302 | + "metadata": {}, |
| 303 | + "output_type": "display_data" |
| 304 | + }, |
| 305 | + { |
| 306 | + "data": { |
| 307 | + "application/vnd.jupyter.widget-view+json": { |
| 308 | + "model_id": "7626726676ed4f9686ea710b846f8e9d", |
| 309 | + "version_major": 2, |
| 310 | + "version_minor": 0 |
| 311 | + }, |
| 312 | + "text/plain": [ |
| 313 | + "vae/config.json: 0%| | 0.00/547 [00:00<?, ?B/s]" |
| 314 | + ] |
| 315 | + }, |
| 316 | + "metadata": {}, |
| 317 | + "output_type": "display_data" |
| 318 | + }, |
| 319 | + { |
| 320 | + "data": { |
| 321 | + "application/vnd.jupyter.widget-view+json": { |
| 322 | + "model_id": "2b880f94671b4192a92f97d6cd42cdf6", |
| 323 | + "version_major": 2, |
| 324 | + "version_minor": 0 |
| 325 | + }, |
| 326 | + "text/plain": [ |
| 327 | + "diffusion_pytorch_model.safetensors: 0%| | 0.00/335M [00:00<?, ?B/s]" |
| 328 | + ] |
| 329 | + }, |
| 330 | + "metadata": {}, |
| 331 | + "output_type": "display_data" |
| 332 | + }, |
| 333 | + { |
| 334 | + "data": { |
| 335 | + "application/vnd.jupyter.widget-view+json": { |
| 336 | + "model_id": "7ce11626fd054518921ca192b52cea6b", |
| 337 | + "version_major": 2, |
| 338 | + "version_minor": 0 |
| 339 | + }, |
| 340 | + "text/plain": [ |
| 341 | + "Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]" |
| 342 | + ] |
| 343 | + }, |
| 344 | + "metadata": {}, |
| 345 | + "output_type": "display_data" |
| 346 | + }, |
| 347 | + { |
| 348 | + "data": { |
| 349 | + "application/vnd.jupyter.widget-view+json": { |
| 350 | + "model_id": "317e981c67ea4533929bba0bbbb34e44", |
| 351 | + "version_major": 2, |
| 352 | + "version_minor": 0 |
| 353 | + }, |
| 354 | + "text/plain": [ |
| 355 | + " 0%| | 0/20 [00:00<?, ?it/s]" |
| 356 | + ] |
| 357 | + }, |
| 358 | + "metadata": {}, |
| 359 | + "output_type": "display_data" |
| 360 | + } |
| 361 | + ], |
| 362 | + "source": [ |
| 363 | + "pipeline = StableDiffusionPipeline.from_pretrained(\"stable-diffusion-v1-5/stable-diffusion-v1-5\", torch_dtype=torch.float16, use_safetensors=True)\n", |
| 364 | + "pipeline.enable_model_cpu_offload()\n", |
| 365 | + "prompt = [\"texture of a red brick wall\"]\n", |
| 366 | + "seed = 123456\n", |
| 367 | + "generator = torch.Generator(device='cuda').manual_seed(seed)\n", |
| 368 | + "\n", |
| 369 | + "pipeline = seamless_tiling(pipeline=pipeline, x_axis=True, y_axis=True)\n", |
| 370 | + "image = pipeline(\n", |
| 371 | + " prompt=prompt,\n", |
| 372 | + " width=512,\n", |
| 373 | + " height=512,\n", |
| 374 | + " num_inference_steps=20,\n", |
| 375 | + " guidance_scale=7,\n", |
| 376 | + " num_images_per_prompt=1,\n", |
| 377 | + " generator=generator\n", |
| 378 | + ").images[0]\n", |
| 379 | + "seamless_tiling(pipeline=pipeline, x_axis=False, y_axis=False)\n", |
| 380 | + "\n", |
| 381 | + "torch.cuda.empty_cache()\n", |
| 382 | + "image.save('image.png')" |
| 383 | + ] |
| 384 | + } |
| 385 | + ], |
| 386 | + "metadata": { |
| 387 | + "language_info": { |
| 388 | + "name": "python" |
| 389 | + } |
| 390 | + }, |
| 391 | + "nbformat": 4, |
| 392 | + "nbformat_minor": 2 |
| 393 | +} |
0 commit comments