Skip to content
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 21 additions & 3 deletions optimum/intel/openvino/modeling_decoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -1295,15 +1295,20 @@ def _has_cache_inputs(model: openvino.Model) -> bool:
"past_key_values" in key.get_any_name() or "cache_params" in key.get_any_name() for key in model.inputs
)

def forward(
def prepare_inputs(
self,
input_ids: Optional[torch.LongTensor] = None,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.LongTensor] = None,
cache_params=None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
**kwargs,
):
) -> Dict:
if kwargs.get("past_key_values") is not None:
raise ValueError("`past_key_values` input is not supported for OVModelWithMambaForCausalLM")
if kwargs.get("position_ids") is not None:
raise ValueError("`position_ids` input is not supported for OVModelWithMambaForCausalLM")

inputs = {"input_ids": input_ids}
if "cache_position" in self.input_names:
if cache_position is None:
Expand Down Expand Up @@ -1340,6 +1345,19 @@ def forward(
batch_size = input_ids.shape[0]
inputs["beam_idx"] = np.arange(batch_size, dtype=int)

return inputs

def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
cache_params=None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
**kwargs,
):
inputs = self.prepare_inputs(input_ids, attention_mask, cache_params, use_cache, cache_position, **kwargs)

self.request.start_async(inputs, share_inputs=True)
self.request.wait()
logits = torch.from_numpy(self.request.get_tensor("logits").data).to(self.device)
Expand Down
Loading