diff --git a/README.md b/README.md
index 5c39a6d..96d6a4b 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1,4 @@
+
# 🤗 Optimum ONNX
@@ -8,41 +9,77 @@
+---
-### Installation
+## Installation
-Before you begin, make sure you install all necessary libraries by running:
+Before you begin, make sure you have **Python 3.9 or higher** installed.
-```bash
-pip install "optimum-onnx[onnxruntime]"
+### 1. Create a virtual environment (recommended)
+```
+python -m venv .venv
+source .venv/bin/activate # macOS / Linux
+.venv\Scripts\activate # Windows
```
-If you want to use the [GPU version of ONNX Runtime](https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#cuda-execution-provider), make sure the CUDA and cuDNN [requirements](https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#requirements) are satisfied, and install the additional dependencies by running :
+### 2. Install Optimum ONNX (CPU version)
-```bash
-pip install "optimum-onnx[onnxruntime-gpu]"
+```
+pip install optimum-onnx[onnxruntime]
```
-To avoid conflicts between `onnxruntime` and `onnxruntime-gpu`, make sure the package `onnxruntime` is not installed by running `pip uninstall onnxruntime` prior to installing Optimum.
+### 3. Install Optimum ONNX (GPU version)
-### ONNX export
+Before installing, ensure your CUDA and cuDNN versions match [ONNX Runtime GPU requirements](https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#requirements).
+
+```
+pip uninstall onnxruntime # avoid conflicts
+pip install optimum-onnx[onnxruntime-gpu]
+```
-It is possible to export 🤗 Transformers, Diffusers, Timm and Sentence Transformers models to the [ONNX](https://onnx.ai/) format and perform graph optimization as well as quantization easily:
+---
-```bash
+## ONNX Export
+
+It is possible to export 🤗 Transformers, Diffusers, Timm, and Sentence Transformers models to the [ONNX](https://onnx.ai/) format and perform graph optimization as well as quantization easily.
+
+Example: Export **Llama 3.2–1B** to ONNX:
+
+```
optimum-cli export onnx --model meta-llama/Llama-3.2-1B onnx_llama/
```
+
The model can also be optimized and quantized with `onnxruntime`.
+### Additional Examples
+
+**DistilBERT for text classification**
+
+```
+optimum-cli export onnx --model distilbert-base-uncased-finetuned-sst-2-english distilbert_onnx/
+```
+
+**Whisper for speech-to-text**
+
+```
+optimum-cli export onnx --model openai/whisper-small whisper_onnx/
+```
+
+**Gemma for general-purpose LLM tasks**
+
+```
+optimum-cli export onnx --model google/gemma-2b gemma_onnx/
+```
+
For more information on the ONNX export, please check the [documentation](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model).
-#### Inference
+---
-Once the model is exported to the ONNX format, we provide Python classes enabling you to run the exported ONNX model in a seamless manner using [ONNX Runtime](https://onnxruntime.ai/) in the backend:
+## Inference
+Once the model is exported to the ONNX format, we provide Python classes enabling you to run the exported ONNX model seamlessly using [ONNX Runtime](https://onnxruntime.ai/) in the backend.
```diff
-
from transformers import AutoTokenizer, pipeline
- from transformers import AutoModelForCausalLM
+ from optimum.onnxruntime import ORTModelForCausalLM
@@ -57,6 +94,40 @@ Once the model is exported to the ONNX format, we provide Python classes enablin
More details on how to run ONNX models with `ORTModelForXXX` classes [here](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models).
-### Examples
+---
+
+## Troubleshooting
+
+**1. `ModuleNotFoundError: No module named 'onnxruntime'`**
+Ensure you have installed either `onnxruntime` (CPU) or `onnxruntime-gpu` (GPU):
+
+```
+pip install "optimum-onnx[onnxruntime]" # CPU
+pip install "optimum-onnx[onnxruntime-gpu]" # GPU
+```
+
+---
+
+**2. CUDA/cuDNN not found**
+Verify your `nvcc --version` output matches ONNX Runtime GPU requirements.
+Install the correct CUDA and cuDNN versions before retrying.
+
+---
+
+**3. Out-of-memory errors**
+Use smaller models (e.g., `distilbert-base-uncased`) or enable model quantization:
+
+```
+optimum-cli export onnx --model distilbert-base-uncased --quantize int8 distilbert_quant/
+```
+
+---
+
+**4. `onnxruntime` and `onnxruntime-gpu` conflict**
+Uninstall the CPU version before installing the GPU version:
+
+```
+pip uninstall onnxruntime
+```
-Check out the [examples folder](./examples) for more usage examples including optimization, quantization, and model-specific demonstrations.
+---