Skip to content

Commit 372a375

Browse files
Orthogonal Subspace Learning: changes for the OSF method
1 parent 50329a7 commit 372a375

File tree

21 files changed

+1547
-33
lines changed

21 files changed

+1547
-33
lines changed

docs/source/_toctree.yml

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -141,6 +141,8 @@
141141
title: Model merge
142142
- local: package_reference/helpers
143143
title: Helpers
144+
- local: package_reference/osf_utils
145+
title: OSF utilities
144146
- local: package_reference/hotswap
145147
title: Hotswapping adapters
146148
- local: package_reference/functional
Lines changed: 236 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,236 @@
1+
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
2+
3+
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
4+
the License. You may obtain a copy of the License at
5+
6+
http://www.apache.org/licenses/LICENSE-2.0
7+
8+
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
9+
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10+
specific language governing permissions and limitations under the License.
11+
12+
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
13+
rendered properly in your Markdown viewer.
14+
15+
-->
16+
17+
# OSF (Orthogonal Subspace Fine-tuning)
18+
19+
Orthogonal Subspace Fine-tuning ([OSF](https://huggingface.co/papers/2504.07097)) is a PEFT method designed for continual learning that constrains parameter updates to be orthogonal to previously important directions. This approach enables full fine-tuning while preventing catastrophic forgetting without requiring additional parameters or storing previous gradients.
20+
21+
The abstract from the paper is:
22+
23+
*Continual learning in large language models (LLMs) is prone to catastrophic forgetting, where adapting to new tasks significantly degrades performance on previously learned ones. Existing methods typically rely on low-rank, parameter-efficient updates that limit the model's expressivity and introduce additional parameters per task, leading to scalability issues. To address these limitations, we propose a novel continual full fine-tuning approach leveraging adaptive singular value decomposition (SVD). Our method dynamically identifies task-specific low-rank parameter subspaces and constrains updates to be orthogonal to critical directions associated with prior tasks, thus effectively minimizing interference without additional parameter overhead or storing previous task gradients. We evaluate our approach extensively on standard continual learning benchmarks using both encoder-decoder (T5-Large) and decoder-only (LLaMA-2 7B) models, spanning diverse tasks including classification, generation, and reasoning. Empirically, our method achieves state-of-the-art results, up to 7% higher average accuracy than recent baselines like O-LoRA, and notably maintains the model's general linguistic capabilities, instruction-following accuracy, and safety throughout the continual learning process by reducing forgetting to near-negligible levels. Our adaptive SVD framework effectively balances model plasticity and knowledge retention, providing a practical, theoretically grounded, and computationally scalable solution for continual learning scenarios in large language models.*
24+
25+
## How OSF Works
26+
27+
OSF decomposes each weight matrix into high-rank (frozen) and low-rank (trainable) components using SVD:
28+
29+
```
30+
W = U_high * S_high * V_high^T + U_low * S_low * V_low^T
31+
```
32+
33+
Where:
34+
- `U_high, S_high, V_high`: Preserve important directions from previous tasks (frozen)
35+
- `U_low, S_low, V_low`: Allow adaptation to new tasks (trainable)
36+
37+
During training, gradients are projected to be orthogonal to the high-rank subspace, ensuring updates don't interfere with previously learned knowledge.
38+
39+
## Basic Usage
40+
41+
```python
42+
import torch
43+
from transformers import AutoModelForCausalLM, AutoTokenizer
44+
from peft import OSFConfig, get_peft_model
45+
46+
# Load base model
47+
model = AutoModelForCausalLM.from_pretrained("gpt2")
48+
49+
# Configure OSF
50+
config = OSFConfig(
51+
target_modules=["c_attn", "c_proj"], # Target attention layers
52+
effective_rank=8, # Default rank for decomposition
53+
rank_pattern={"c_attn": 16} # Override rank for specific modules
54+
)
55+
56+
# Apply OSF
57+
model = get_peft_model(model, config)
58+
59+
# Train as usual
60+
optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4)
61+
62+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
63+
tokenizer.pad_token = tokenizer.eos_token
64+
65+
inputs = tokenizer("Hello world", return_tensors="pt", padding=True)
66+
loss = model(**inputs, labels=inputs.input_ids).loss
67+
loss.backward()
68+
optimizer.step()
69+
optimizer.zero_grad()
70+
```
71+
72+
## Configuration Options
73+
74+
### Target Modules
75+
76+
You can specify target modules in several ways:
77+
78+
```python
79+
# Specific module names
80+
config = OSFConfig(target_modules=["q_proj", "k_proj", "v_proj", "o_proj"])
81+
82+
# All linear layers
83+
config = OSFConfig(target_modules="all-linear")
84+
85+
# Model-specific defaults (automatically detected)
86+
config = OSFConfig() # Uses model-appropriate defaults
87+
```
88+
89+
### Effective Rank Configuration
90+
91+
Control the decomposition rank:
92+
93+
```python
94+
# Global rank (applies to all target modules)
95+
config = OSFConfig(effective_rank=16)
96+
97+
# Automatic rank (50% of the smaller matrix dimension per target)
98+
config = OSFConfig(effective_rank=None)
99+
100+
# Per-module rank overrides
101+
config = OSFConfig(
102+
effective_rank=8,
103+
rank_pattern={
104+
"q_proj": 16, # Higher rank for query projection
105+
"gate_proj": 4 # Lower rank for gate projection
106+
}
107+
)
108+
```
109+
110+
## Training Advice for Continual Learning
111+
112+
### Sequential Task Learning
113+
114+
OSF is specifically designed for learning tasks sequentially. Between tasks, recompute the SVD so the preserved subspace reflects the latest weights. One simple way is to re-wrap the updated base model with OSF again:
115+
116+
```python
117+
# Task 1: train on domain A with initial preserved subspace
118+
r = 8 # initial effective rank to preserve
119+
model = get_peft_model(base_model, OSFConfig(effective_rank=r))
120+
train_task(model, task_1_data)
121+
122+
# Task 2: recompute SVD on updated weights and increase preserved subspace
123+
base_model = model.base_model.model # unwrap updated base
124+
r += 4 # grow preserved subspace to include Task 1 knowledge
125+
model = get_peft_model(base_model, OSFConfig(effective_rank=r))
126+
train_task(model, task_2_data)
127+
128+
# Task 3: recompute again and expand preserved subspace further
129+
base_model = model.base_model.model
130+
r += 4
131+
model = get_peft_model(base_model, OSFConfig(effective_rank=r))
132+
train_task(model, task_3_data)
133+
```
134+
135+
### Budget Allocation for Task Sequences
136+
137+
When training on a known sequence of n tasks, one effective strategy is to progressively allocate model capacity to balance learning new tasks while preserving previous knowledge:
138+
139+
- **Task 1**: Use full capacity (train everything)
140+
- **Task 2**: Freeze 1/n of model capacity, train remaining (n-1)/n capacity
141+
- **Task 3**: Freeze 2/n of model capacity, train remaining (n-2)/n capacity
142+
- **Task n**: Freeze (n-1)/n of model capacity, use 1/n capacity for final task
143+
144+
This approach ensures each task gets adequate learning capacity while progressively preserving more knowledge from previous tasks.
145+
146+
```python
147+
# Example: 4-task sequence with progressive budget allocation
148+
n_tasks = 4
149+
base_rank = 32 # Starting rank for full capacity
150+
151+
for task_id in range(n_tasks):
152+
# Calculate remaining capacity for current task
153+
freeze_fraction = task_id / n_tasks
154+
remaining_capacity = 1.0 - freeze_fraction
155+
current_rank = int(base_rank * remaining_capacity)
156+
157+
config = OSFConfig(
158+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
159+
effective_rank=current_rank
160+
)
161+
162+
print(f"Task {task_id + 1}: Using rank {current_rank} "
163+
f"({remaining_capacity:.1%} of full capacity)")
164+
165+
# Train on current task
166+
model = get_peft_model(base_model, config)
167+
train_task(model, task_data[task_id])
168+
```
169+
170+
### Best Practices
171+
172+
1. **Effective Rank Selection**: Start with `effective_rank=None` (auto sets rank to 50% of the smaller weight dimension per target module) and adjust based on task complexity
173+
2. **Learning Rate**: Use smaller learning rates (1e-5 to 1e-4) compared to standard fine-tuning
174+
3. **Task Importance**: Use `rank_pattern` to allocate more capacity to critical modules
175+
4. **Model Architecture**: OSF works best with transformer architectures having clear attention and MLP separations
176+
5. **Capacity Planning**: For known task sequences, use progressive budget allocation (1/n, 2/n, ..., (n-1)/n freezing) to balance plasticity and stability
177+
178+
### Memory Considerations
179+
180+
OSF modifies weights in-place and doesn't add parameters, making it memory-efficient:
181+
182+
```python
183+
# Memory usage remains close to base model
184+
print(f"Base model parameters: {base_model.num_parameters():,}")
185+
print(f"OSF model parameters: {osf_model.num_parameters():,}") # Similar count
186+
```
187+
188+
## Advanced Usage
189+
190+
### Custom Target Modules
191+
192+
For models with non-standard architectures:
193+
194+
```python
195+
config = OSFConfig(
196+
target_modules=["dense", "intermediate.dense"], # Custom layer names
197+
effective_rank=12,
198+
rank_pattern={"dense": 8, "intermediate.dense": 16}
199+
)
200+
```
201+
202+
### Integration with Other Methods
203+
204+
OSF can be combined with other techniques:
205+
206+
```python
207+
# Use with gradient checkpointing for memory efficiency
208+
model.gradient_checkpointing_enable()
209+
210+
# Apply weight decay selectively (regularizes low-rank factors to limit drift/overfitting in continual updates; keep small)
211+
optimizer = torch.optim.AdamW([
212+
{"params": [p for n, p in model.named_parameters() if "U_low" in n], "weight_decay": 0.01},
213+
{"params": [p for n, p in model.named_parameters() if "S_low" in n], "weight_decay": 0.001},
214+
{"params": [p for n, p in model.named_parameters() if "V_low" in n], "weight_decay": 0.01},
215+
], lr=1e-4)
216+
```
217+
218+
## OSFConfig
219+
220+
[[autodoc]] tuners.osf.config.OSFConfig
221+
222+
## OSFModel
223+
224+
[[autodoc]] tuners.osf.model.OSFModel
225+
226+
## Utility Functions
227+
228+
### Weight Decomposition
229+
230+
[[autodoc]] tuners.osf.utils.decompose_weight_matrix
231+
232+
[[autodoc]] tuners.osf.utils.reconstruct_weight_matrix
233+
234+
### Gradient Projection
235+
236+
[[autodoc]] tuners.osf.utils.project_gradient_to_orthogonal_space
Lines changed: 37 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,37 @@
1+
# Orthogonal Subspace Learning with Adaptive OSF
2+
3+
## TODO: Runnable Example Needed
4+
5+
This folder is a placeholder for a comprehensive OSF example. As suggested in the review feedback:
6+
7+
> "If you can, provide a runnable example in this folder instead, you can take a look at the EVA example for inspiration. A runnable example can be a good place to showcase the different features. Jupyter notebooks are fine as well."
8+
9+
### Planned Example Features:
10+
- Complete continual learning scenario with multiple tasks
11+
- Demonstration of OSF's catastrophic forgetting prevention
12+
- Configuration examples (target_modules, effective_rank, rank_pattern)
13+
- Performance comparison with baseline methods
14+
- Memory usage analysis
15+
16+
### Current Basic Usage:
17+
For basic usage examples and API documentation, see the [OSF documentation](../../docs/source/package_reference/osf.md).
18+
19+
```python
20+
import torch
21+
from transformers import AutoModelForCausalLM, AutoTokenizer
22+
from peft import OSFConfig, get_peft_model
23+
24+
model = AutoModelForCausalLM.from_pretrained("gpt2")
25+
config = OSFConfig(target_modules=["c_attn", "c_proj"], effective_rank=8)
26+
model = get_peft_model(model, config)
27+
28+
optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4)
29+
30+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
31+
tokenizer.pad_token = tokenizer.eos_token
32+
inputs = tokenizer("Hello world", return_tensors="pt", padding=True)
33+
loss = model(**inputs, labels=inputs.input_ids).loss
34+
loss.backward()
35+
optimizer.step()
36+
optimizer.zero_grad()
37+
```
Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
{
2+
"task_type": null,
3+
"peft_type": "OSF",
4+
"auto_mapping": null,
5+
"base_model_name_or_path": "meta-llama/Llama-3.2-3B",
6+
"revision": null,
7+
"inference_mode": false,
8+
"effective_rank": null,
9+
"target_modules": [
10+
"q_proj",
11+
"k_proj",
12+
"v_proj",
13+
"o_proj",
14+
"gate_proj",
15+
"down_proj",
16+
"up_proj"
17+
],
18+
"rank_pattern": null
19+
}
20+
Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
{
2+
"optimizer_kwargs": {
3+
"lr": 5e-5
4+
}
5+
}
6+

0 commit comments

Comments
 (0)