|
2 | 2 |
|
3 | 3 | ## What's New |
4 | 4 |
|
| 5 | +### Feb 1/2, 2020 |
| 6 | +* Port new EfficientNet-B8 (RandAugment) weights, these are different than the B8 AdvProp, different input normalization. |
| 7 | +* Update results csv files on all models for ImageNet validation and three other test sets |
| 8 | +* Push PyPi package update |
| 9 | + |
5 | 10 | ### Jan 31, 2020 |
6 | 11 | * Update ResNet50 weights with a new 79.038 result from further JSD / AugMix experiments. Full command line for reproduction in training section below. |
7 | 12 |
|
@@ -87,9 +92,9 @@ Included models: |
87 | 92 | * Original variant from [Cadene](https://github.com/Cadene/pretrained-models.pytorch) |
88 | 93 | * MXNet Gluon 'modified aligned' Xception-65 and 71 models from [Gluon ModelZoo](https://github.com/dmlc/gluon-cv/tree/master/gluoncv/model_zoo) |
89 | 94 | * PNasNet & NASNet-A (from [Cadene](https://github.com/Cadene/pretrained-models.pytorch)) |
90 | | -* DPN (from [me](https://github.com/rwightman/pytorch-dpn-pretrained), weights hosted by Cadene) |
| 95 | +* DPN (from [myself](https://github.com/rwightman/pytorch-dpn-pretrained)) |
91 | 96 | * DPN-68, DPN-68b, DPN-92, DPN-98, DPN-131, DPN-107 |
92 | | -* EfficientNet (from my standalone [GenMobileNet](https://github.com/rwightman/genmobilenet-pytorch)) - A generic model that implements many of the efficient models that utilize similar DepthwiseSeparable and InvertedResidual blocks |
| 97 | +* EfficientNet (from my standalone [GenEfficientNet](https://github.com/rwightman/gen-efficientnet-pytorch)) - A generic model that implements many of the efficient models that utilize similar DepthwiseSeparable and InvertedResidual blocks |
93 | 98 | * EfficientNet AdvProp (B0-B8) (https://arxiv.org/abs/1911.09665) -- TF weights ported |
94 | 99 | * EfficientNet (B0-B7) (https://arxiv.org/abs/1905.11946) -- TF weights ported, B0-B2 finetuned PyTorch |
95 | 100 | * EfficientNet-EdgeTPU (S, M, L) (https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html) --TF weights ported |
@@ -136,8 +141,8 @@ I've leveraged the training scripts in this repository to train a few of the mod |
136 | 141 |
|
137 | 142 | |Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Image Size | |
138 | 143 | |---|---|---|---|---|---| |
139 | | -| efficientnet_b3a | 81.874 (18.126) | 95.840 (4.160) | 9.11M | bicubic | 320 (1.0 crop) | |
140 | | -| efficientnet_b3 | 81.498 (18.502) | 95.718 (4.282) | 9.11M | bicubic | 300 | |
| 144 | +| efficientnet_b3a | 81.874 (18.126) | 95.840 (4.160) | 12.23M | bicubic | 320 (1.0 crop) | |
| 145 | +| efficientnet_b3 | 81.498 (18.502) | 95.718 (4.282) | 12.23M | bicubic | 300 | |
141 | 146 | | efficientnet_b2a | 80.608 (19.392) | 95.310 (4.690) | 9.11M | bicubic | 288 (1.0 crop) | |
142 | 147 | | mixnet_xl | 80.478 (19.522) | 94.932 (5.068) | 11.90M | bicubic | 224 | |
143 | 148 | | efficientnet_b2 | 80.402 (19.598) | 95.076 (4.924) | 9.11M | bicubic | 260 | |
@@ -170,6 +175,8 @@ For the models below, the model code and weight porting from Tensorflow or MXNet |
170 | 175 | | Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Image Size | |
171 | 176 | |---|---|---|---|---|---| |
172 | 177 | | tf_efficientnet_b8_ap *tfp | 85.436 (14.564) | 97.272 (2.728) | 87.4 | bicubic | 672 | |
| 178 | +| tf_efficientnet_b8 *tfp | 85.384 (14.616) | 97.394 (2.606) | 87.4 | bicubic | 672 | |
| 179 | +| tf_efficientnet_b8 | 85.37 (14.63) | 97.39 (2.61) | 87.4 | bicubic | 672 | |
173 | 180 | | tf_efficientnet_b8_ap | 85.368 (14.632) | 97.294 (2.706) | 87.4 | bicubic | 672 | |
174 | 181 | | tf_efficientnet_b7_ap *tfp | 85.154 (14.846) | 97.244 (2.756) | 66.35 | bicubic | 600 | |
175 | 182 | | tf_efficientnet_b7_ap | 85.118 (14.882) | 97.252 (2.748) | 66.35 | bicubic | 600 | |
@@ -309,13 +316,13 @@ Trained on two older 1080Ti cards, this took a while. Only slightly, non statist |
309 | 316 |
|
310 | 317 | All development and testing has been done in Conda Python 3 environments on Linux x86-64 systems, specifically Python 3.6.x and 3.7.x. Little to no care has been taken to be Python 2.x friendly and I don't plan to support it. If you run into any challenges running on Windows, or other OS, I'm definitely open to looking into those issues so long as it's in a reproducible (read Conda) environment. |
311 | 318 |
|
312 | | -PyTorch versions 1.2 and 1.3.1 have been tested with this code. |
| 319 | +PyTorch versions 1.2, 1.3.1, and 1.4 have been tested with this code. |
313 | 320 |
|
314 | 321 | I've tried to keep the dependencies minimal, the setup is as per the PyTorch default install instructions for Conda: |
315 | 322 | ``` |
316 | 323 | conda create -n torch-env |
317 | 324 | conda activate torch-env |
318 | | -conda install -c pytorch pytorch torchvision cudatoolkit=10 |
| 325 | +conda install -c pytorch pytorch torchvision cudatoolkit=10.1 |
319 | 326 | conda install pyyaml |
320 | 327 | ``` |
321 | 328 |
|
|
0 commit comments