@@ -56,8 +56,7 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
5656 model_desc = 'Trained from scratch in PyTorch w/ RandAugment' ),
5757 _entry ('efficientnet_es' , 'EfficientNet-EdgeTPU-S' , '1905.11946' ,
5858 model_desc = 'Trained from scratch in PyTorch w/ RandAugment' ),
59- _entry ('fbnetc_100' , 'FBNet-C' , '1812.03443' ,
60- model_desc = 'Trained in PyTorch with RMSProp, exponential LR decay' ),
59+
6160 _entry ('gluon_inception_v3' , 'Inception V3' , '1512.00567' , model_desc = 'Ported from GluonCV Model Zoo' ),
6261 _entry ('gluon_resnet18_v1b' , 'ResNet-18' , '1812.01187' , model_desc = 'Ported from GluonCV Model Zoo' ),
6362 _entry ('gluon_resnet34_v1b' , 'ResNet-34' , '1812.01187' , model_desc = 'Ported from GluonCV Model Zoo' ),
@@ -82,14 +81,22 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
8281 _entry ('gluon_seresnext101_64x4d' , 'SE-ResNeXt-101 64x4d' , '1812.01187' , model_desc = 'Ported from GluonCV Model Zoo' ),
8382 _entry ('gluon_xception65' , 'Modified Aligned Xception' , '1802.02611' , batch_size = BATCH_SIZE // 2 ,
8483 model_desc = 'Ported from GluonCV Model Zoo' ),
84+
8585 _entry ('mixnet_xl' , 'MixNet-XL' , '1907.09595' , model_desc = "My own scaling beyond paper's MixNet Large" ),
8686 _entry ('mixnet_l' , 'MixNet-L' , '1907.09595' ),
8787 _entry ('mixnet_m' , 'MixNet-M' , '1907.09595' ),
8888 _entry ('mixnet_s' , 'MixNet-S' , '1907.09595' ),
89+
90+ _entry ('fbnetc_100' , 'FBNet-C' , '1812.03443' ,
91+ model_desc = 'Trained in PyTorch with RMSProp, exponential LR decay' ),
8992 _entry ('mnasnet_100' , 'MnasNet-B1' , '1807.11626' ),
93+ _entry ('semnasnet_100' , 'MnasNet-A1' , '1807.11626' ),
94+ _entry ('spnasnet_100' , 'Single-Path NAS' , '1904.02877' ,
95+ model_desc = 'Trained in PyTorch with SGD, cosine LR decay' ),
9096 _entry ('mobilenetv3_rw' , 'MobileNet V3-Large 1.0' , '1905.02244' ,
9197 model_desc = 'Trained in PyTorch with RMSProp, exponential LR decay, and hyper-params matching '
9298 'paper as closely as possible.' ),
99+
93100 _entry ('resnet18' , 'ResNet-18' , '1812.01187' ),
94101 _entry ('resnet26' , 'ResNet-26' , '1812.01187' , model_desc = 'Block cfg of ResNet-34 w/ Bottleneck' ),
95102 _entry ('resnet26d' , 'ResNet-26-D' , '1812.01187' ,
@@ -103,7 +110,7 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
103110 _entry ('resnext50d_32x4d' , 'ResNeXt-50-D 32x4d' , '1812.01187' ,
104111 model_desc = "'D' variant (3x3 deep stem w/ avg-pool downscale). Trained with "
105112 "SGD w/ cosine LR decay, random-erasing (gaussian per-pixel noise) and label-smoothing" ),
106- _entry ( 'semnasnet_100' , 'MnasNet-A1' , '1807.11626' ),
113+
107114 _entry ('seresnet18' , 'SE-ResNet-18' , '1709.01507' ),
108115 _entry ('seresnet34' , 'SE-ResNet-34' , '1709.01507' ),
109116 _entry ('seresnext26_32x4d' , 'SE-ResNeXt-26 32x4d' , '1709.01507' ,
@@ -114,8 +121,9 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
114121 model_desc = 'Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep tiered stem, and avg-pool in downsample layers.' ),
115122 _entry ('seresnext26tn_32x4d' , 'SE-ResNeXt-26-TN 32x4d' , '1812.01187' ,
116123 model_desc = 'Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep tiered narrow stem, and avg-pool in downsample layers.' ),
117- _entry ('spnasnet_100' , 'Single-Path NAS' , '1904.02877' ,
118- model_desc = 'Trained in PyTorch with SGD, cosine LR decay' ),
124+
125+ _entry ('skresnet18' , 'SK-ResNet-18' , '1903.06586' ),
126+ _entry ('skresnext50_32x4d' , 'SKNet-50' , '1903.06586' ),
119127
120128 _entry ('tf_efficientnet_b0' , 'EfficientNet-B0 (AutoAugment)' , '1905.11946' ,
121129 model_desc = 'Ported from official Google AI Tensorflow weights' ),
0 commit comments