@@ -2279,6 +2279,7 @@ def _cfg(url: str = '', **kwargs) -> Dict[str, Any]:
22792279 'crop_pct' : 0.875 , 'interpolation' : 'bilinear' ,
22802280 'mean' : IMAGENET_DEFAULT_MEAN , 'std' : IMAGENET_DEFAULT_STD ,
22812281 'first_conv' : 'stem.conv' , 'classifier' : 'head.fc' ,
2282+ 'license' : 'apache-2.0' ,
22822283 ** kwargs
22832284 }
22842285
@@ -2298,6 +2299,7 @@ def _cfgr(url: str = '', **kwargs) -> Dict[str, Any]:
22982299 'crop_pct' : 0.9 , 'interpolation' : 'bicubic' ,
22992300 'mean' : IMAGENET_DEFAULT_MEAN , 'std' : IMAGENET_DEFAULT_STD ,
23002301 'first_conv' : 'stem.conv1.conv' , 'classifier' : 'head.fc' ,
2302+ 'license' : 'apache-2.0' ,
23012303 ** kwargs
23022304 }
23032305
@@ -2451,26 +2453,31 @@ def _cfgr(url: str = '', **kwargs) -> Dict[str, Any]:
24512453 hf_hub_id = 'timm/' ,
24522454 crop_pct = 0.875 ,
24532455 first_conv = ('stem.conv_kxk.0.conv' , 'stem.conv_scale.conv' ),
2456+ license = 'other' ,
24542457 ),
24552458 'mobileone_s1.apple_in1k' : _cfg (
24562459 hf_hub_id = 'timm/' ,
24572460 crop_pct = 0.9 ,
24582461 first_conv = ('stem.conv_kxk.0.conv' , 'stem.conv_scale.conv' ),
2462+ license = 'other' ,
24592463 ),
24602464 'mobileone_s2.apple_in1k' : _cfg (
24612465 hf_hub_id = 'timm/' ,
24622466 crop_pct = 0.9 ,
24632467 first_conv = ('stem.conv_kxk.0.conv' , 'stem.conv_scale.conv' ),
2468+ license = 'other' ,
24642469 ),
24652470 'mobileone_s3.apple_in1k' : _cfg (
24662471 hf_hub_id = 'timm/' ,
24672472 crop_pct = 0.9 ,
24682473 first_conv = ('stem.conv_kxk.0.conv' , 'stem.conv_scale.conv' ),
2474+ license = 'other' ,
24692475 ),
24702476 'mobileone_s4.apple_in1k' : _cfg (
24712477 hf_hub_id = 'timm/' ,
24722478 crop_pct = 0.9 ,
24732479 first_conv = ('stem.conv_kxk.0.conv' , 'stem.conv_scale.conv' ),
2480+ license = 'other' ,
24742481 ),
24752482
24762483 # original attention pool head variants
@@ -2479,90 +2486,106 @@ def _cfgr(url: str = '', **kwargs) -> Dict[str, Any]:
24792486 num_classes = 1024 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
24802487 fixed_input_size = True , input_size = (3 , 224 , 224 ), pool_size = (7 , 7 ),
24812488 classifier = 'head.proj' ,
2489+ license = 'mit' ,
24822490 ),
24832491 'resnet101_clip.openai' : _cfgr (
24842492 hf_hub_id = 'timm/' ,
24852493 num_classes = 512 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
24862494 fixed_input_size = True , input_size = (3 , 224 , 224 ), pool_size = (7 , 7 ),
24872495 classifier = 'head.proj' ,
2496+ license = 'mit' ,
24882497 ),
24892498 'resnet50x4_clip.openai' : _cfgr (
24902499 hf_hub_id = 'timm/' ,
24912500 num_classes = 640 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
24922501 fixed_input_size = True , input_size = (3 , 288 , 288 ), pool_size = (9 , 9 ),
24932502 classifier = 'head.proj' ,
2503+ license = 'mit' ,
24942504 ),
24952505 'resnet50x16_clip.openai' : _cfgr (
24962506 hf_hub_id = 'timm/' ,
24972507 num_classes = 768 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
24982508 fixed_input_size = True , input_size = (3 , 384 , 384 ), pool_size = (12 , 12 ),
24992509 classifier = 'head.proj' ,
2510+ license = 'mit' ,
25002511 ),
25012512 'resnet50x64_clip.openai' : _cfgr (
25022513 hf_hub_id = 'timm/' ,
25032514 num_classes = 1024 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
25042515 fixed_input_size = True , input_size = (3 , 448 , 448 ), pool_size = (14 , 14 ),
25052516 classifier = 'head.proj' ,
2517+ license = 'mit' ,
25062518 ),
25072519 'resnet50_clip.cc12m' : _cfgr (
25082520 hf_hub_id = 'timm/' ,
25092521 num_classes = 1024 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
25102522 fixed_input_size = True , input_size = (3 , 224 , 224 ), pool_size = (7 , 7 ),
25112523 classifier = 'head.proj' ,
2524+ license = 'mit' ,
25122525 ),
25132526 'resnet50_clip.yfcc15m' : _cfgr (
25142527 hf_hub_id = 'timm/' ,
25152528 num_classes = 1024 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
25162529 fixed_input_size = True , input_size = (3 , 224 , 224 ), pool_size = (7 , 7 ),
25172530 classifier = 'head.proj' ,
2531+ license = 'mit' ,
25182532 ),
25192533 'resnet101_clip.yfcc15m' : _cfgr (
25202534 hf_hub_id = 'timm/' ,
25212535 num_classes = 512 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
25222536 fixed_input_size = True , input_size = (3 , 224 , 224 ), pool_size = (7 , 7 ),
25232537 classifier = 'head.proj' ,
2538+ license = 'mit' ,
25242539 ),
25252540
25262541 # avg-pool w/ optional standard classifier head variants
25272542 'resnet50_clip_gap.openai' : _cfgr (
25282543 hf_hub_id = 'timm/' ,
25292544 num_classes = 0 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
25302545 input_size = (3 , 224 , 224 ), pool_size = (7 , 7 ),
2546+ license = 'mit' ,
25312547 ),
25322548 'resnet101_clip_gap.openai' : _cfgr (
25332549 hf_hub_id = 'timm/' ,
25342550 num_classes = 0 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
25352551 input_size = (3 , 224 , 224 ), pool_size = (7 , 7 ),
2552+ license = 'mit' ,
25362553 ),
25372554 'resnet50x4_clip_gap.openai' : _cfgr (
25382555 hf_hub_id = 'timm/' ,
25392556 num_classes = 0 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
25402557 input_size = (3 , 288 , 288 ), pool_size = (9 , 9 ),
2558+ license = 'mit' ,
25412559 ),
25422560 'resnet50x16_clip_gap.openai' : _cfgr (
25432561 hf_hub_id = 'timm/' ,
25442562 num_classes = 0 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
25452563 input_size = (3 , 384 , 384 ), pool_size = (12 , 12 ),
2564+ license = 'mit' ,
25462565 ),
25472566 'resnet50x64_clip_gap.openai' : _cfgr (
25482567 hf_hub_id = 'timm/' ,
25492568 num_classes = 0 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
25502569 input_size = (3 , 448 , 448 ), pool_size = (14 , 14 ),
2570+ license = 'mit' ,
25512571 ),
25522572 'resnet50_clip_gap.cc12m' : _cfgr (
25532573 hf_hub_id = 'timm/' ,
25542574 num_classes = 0 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
25552575 input_size = (3 , 224 , 224 ), pool_size = (7 , 7 ),
2576+ license = 'mit' ,
25562577 ),
25572578 'resnet50_clip_gap.yfcc15m' : _cfgr (
25582579 hf_hub_id = 'timm/' ,
25592580 num_classes = 0 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
25602581 input_size = (3 , 224 , 224 ), pool_size = (7 , 7 ),
2582+ license = 'mit' ,
25612583 ),
25622584 'resnet101_clip_gap.yfcc15m' : _cfgr (
25632585 hf_hub_id = 'timm/' ,
25642586 num_classes = 0 , mean = OPENAI_CLIP_MEAN , std = OPENAI_CLIP_STD ,
25652587 input_size = (3 , 224 , 224 ), pool_size = (7 , 7 ),
2588+ license = 'mit' ,
25662589 ),
25672590
25682591 'resnet50_mlp.untrained' : _cfgr (
0 commit comments