@@ -23,6 +23,20 @@ I'm fortunate to be able to dedicate significant time and money of my own suppor
2323
2424## What's New
2525
26+ ### May 5, 2021
27+ * Add MLP-Mixer models and port pretrained weights from [ Google JAX impl] ( https://github.com/google-research/vision_transformer/tree/linen )
28+ * Add CaiT models and pretrained weights from [ FB] ( https://github.com/facebookresearch/deit )
29+ * Add ResNet-RS models and weights from [ TF] ( https://github.com/tensorflow/tpu/tree/master/models/official/resnet/resnet_rs ) . Thanks [ Aman Arora] ( https://github.com/amaarora )
30+ * Add CoaT models and weights. Thanks [ Mohammed Rizin] ( https://github.com/morizin )
31+ * Add new ImageNet-21k weights & finetuned weights for TResNet, MobileNet-V3, ViT models. Thanks [ mrT] ( https://github.com/mrT23 )
32+ * Add GhostNet models and weights. Thanks [ Kai Han] ( https://github.com/iamhankai )
33+ * Update ByoaNet attention modles
34+ * Improve SA module inits
35+ * Hack together experimental stand-alone Swin based attn module and ` swinnet `
36+ * Consistent '26t' model defs for experiments.
37+ * Add improved Efficientnet-V2S (prelim model def) weights. 83.8 top-1.
38+ * WandB logging support
39+
2640### April 13, 2021
2741* Add Swin Transformer models and weights from https://github.com/microsoft/Swin-Transformer
2842
@@ -182,6 +196,8 @@ A full version of the list below with source links can be found in the [document
182196
183197* Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
184198* Bottleneck Transformers - https://arxiv.org/abs/2101.11605
199+ * CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
200+ * CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
185201* CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929
186202* DeiT (Vision Transformer) - https://arxiv.org/abs/2012.12877
187203* DenseNet - https://arxiv.org/abs/1608.06993
@@ -192,18 +208,21 @@ A full version of the list below with source links can be found in the [document
192208 * EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
193209 * EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
194210 * EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
211+ * EfficientNet V2 - https://arxiv.org/abs/2104.00298
195212 * FBNet-C - https://arxiv.org/abs/1812.03443
196213 * MixNet - https://arxiv.org/abs/1907.09595
197214 * MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
198215 * MobileNet-V2 - https://arxiv.org/abs/1801.04381
199216 * Single-Path NAS - https://arxiv.org/abs/1904.02877
217+ * GhostNet - https://arxiv.org/abs/1911.11907
200218* GPU-Efficient Networks - https://arxiv.org/abs/2006.14090
201219* Halo Nets - https://arxiv.org/abs/2103.12731
202220* HardCoRe-NAS - https://arxiv.org/abs/2102.11646
203221* HRNet - https://arxiv.org/abs/1908.07919
204222* Inception-V3 - https://arxiv.org/abs/1512.00567
205223* Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
206224* Lambda Networks - https://arxiv.org/abs/2102.08602
225+ * MLP-Mixer - https://arxiv.org/abs/2105.01601
207226* MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
208227* NASNet-A - https://arxiv.org/abs/1707.07012
209228* NFNet-F - https://arxiv.org/abs/2102.06171
@@ -220,6 +239,7 @@ A full version of the list below with source links can be found in the [document
220239 * Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546
221240 * ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4
222241 * Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507
242+ * ResNet-RS - https://arxiv.org/abs/2103.07579
223243* Res2Net - https://arxiv.org/abs/1904.01169
224244* ResNeSt - https://arxiv.org/abs/2004.08955
225245* ReXNet - https://arxiv.org/abs/2007.00992
0 commit comments