You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/source/en/quick_tour.md
+4-4Lines changed: 4 additions & 4 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -34,7 +34,7 @@ Next it's time to deploy your model. Let's say you want to use [`Qwen/Qwen3-Embe
34
34
model=Qwen/Qwen3-Embedding-0.6B
35
35
volume=$PWD/data
36
36
37
-
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.7 --model-id $model
37
+
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.8 --model-id $model
38
38
```
39
39
40
40
<Tip>
@@ -110,7 +110,7 @@ Let's say you want to use [`BAAI/bge-reranker-large`](https://huggingface.co/BAA
110
110
model=BAAI/bge-reranker-large
111
111
volume=$PWD/data
112
112
113
-
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.7 --model-id $model
113
+
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.8 --model-id $model
114
114
```
115
115
116
116
Once you have deployed a model, you can use the `rerank` endpoint to rank the similarity between a query and a list of texts. With `cURL` this can be done like so:
@@ -130,7 +130,7 @@ You can also use classic Sequence Classification models like [`SamLowe/roberta-b
130
130
model=SamLowe/roberta-base-go_emotions
131
131
volume=$PWD/data
132
132
133
-
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.7 --model-id $model
133
+
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.8 --model-id $model
134
134
```
135
135
136
136
Once you have deployed the model you can use the `predict` endpoint to get the emotions most associated with an input:
0 commit comments