Skip to content

Commit f08f91c

Browse files
committed
Default to Qwen/Qwen3-Embedding-0.6B in docs/ examples
1 parent 62e29e5 commit f08f91c

File tree

5 files changed

+11
-14
lines changed

5 files changed

+11
-14
lines changed

docs/source/en/intel_container.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ docker build . -f Dockerfile-intel --build-arg PLATFORM=$platform -t tei_cpu_ipe
3535
To deploy your model on an Intel® CPU, use the following command:
3636

3737
```shell
38-
model='BAAI/bge-large-en-v1.5'
38+
model='Qwen/Qwen3-Embedding-0.6B'
3939
volume=$PWD/data
4040

4141
docker run -p 8080:80 -v $volume:/data tei_cpu_ipex --model-id $model
@@ -58,7 +58,7 @@ docker build . -f Dockerfile-intel --build-arg PLATFORM=$platform -t tei_xpu_ipe
5858
To deploy your model on an Intel® XPU, use the following command:
5959

6060
```shell
61-
model='BAAI/bge-large-en-v1.5'
61+
model='Qwen/Qwen3-Embedding-0.6B'
6262
volume=$PWD/data
6363

6464
docker run -p 8080:80 -v $volume:/data --device=/dev/dri -v /dev/dri/by-path:/dev/dri/by-path tei_xpu_ipex --model-id $model --dtype float16
@@ -81,7 +81,7 @@ docker build . -f Dockerfile-intel --build-arg PLATFORM=$platform -t tei_hpu
8181
To deploy your model on an Intel® HPU (Gaudi), use the following command:
8282

8383
```shell
84-
model='BAAI/bge-large-en-v1.5'
84+
model='Qwen/Qwen3-Embedding-0.6B'
8585
volume=$PWD/data
8686

8787
docker run -p 8080:80 -v $volume:/data --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e MAX_WARMUP_SEQUENCE_LENGTH=512 tei_hpu --model-id $model --dtype bfloat16

docs/source/en/local_cpu.md

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -47,10 +47,9 @@ cargo install --path router -F metal
4747
Once the installation is successfully complete, you can launch Text Embeddings Inference on CPU with the following command:
4848

4949
```shell
50-
model=BAAI/bge-large-en-v1.5
51-
revision=refs/pr/5
50+
model=Qwen/Qwen3-Embedding-0.6B
5251

53-
text-embeddings-router --model-id $model --revision $revision --port 8080
52+
text-embeddings-router --model-id $model --port 8080
5453
```
5554

5655
<Tip>

docs/source/en/local_gpu.md

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -58,8 +58,7 @@ cargo install --path router -F candle-cuda -F http --no-default-features
5858
You can now launch Text Embeddings Inference on GPU with:
5959

6060
```shell
61-
model=BAAI/bge-large-en-v1.5
62-
revision=refs/pr/5
61+
model=Qwen/Qwen3-Embedding-0.6B
6362

64-
text-embeddings-router --model-id $model --revision $revision --port 8080
63+
text-embeddings-router --model-id $model --dtype float16 --port 8080
6564
```

docs/source/en/local_metal.md

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -38,10 +38,9 @@ cargo install --path router -F metal
3838
Once the installation is successfully complete, you can launch Text Embeddings Inference with Metal with the following command:
3939

4040
```shell
41-
model=BAAI/bge-large-en-v1.5
42-
revision=refs/pr/5
41+
model=Qwen/Qwen3-Embedding-0.6B
4342

44-
text-embeddings-router --model-id $model --revision $revision --port 8080
43+
text-embeddings-router --model-id $model --port 8080
4544
```
4645

4746
Now you are ready to use `text-embeddings-inference` locally on your machine.

docs/source/en/quick_tour.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -28,10 +28,10 @@ Next, install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/
2828

2929
## Deploy
3030

31-
Next it's time to deploy your model. Let's say you want to use [`BAAI/bge-large-en-v1.5`](https://huggingface.co/BAAI/bge-large-en-v1.5). Here's how you can do this:
31+
Next it's time to deploy your model. Let's say you want to use [`Qwen/Qwen3-Embedding-0.6B`](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B). Here's how you can do this:
3232

3333
```shell
34-
model=BAAI/bge-large-en-v1.5
34+
model=Qwen/Qwen3-Embedding-0.6B
3535
volume=$PWD/data
3636

3737
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.7 --model-id $model

0 commit comments

Comments
 (0)