@@ -16,7 +16,7 @@ Start by creating an instance of `pipeline()` and specifying a task you want to
1616``` javascript
1717import { pipeline } from ' @huggingface/transformers' ;
1818
19- let classifier = await pipeline (' sentiment-analysis' );
19+ const classifier = await pipeline (' sentiment-analysis' );
2020```
2121
2222When running for the first time, the ` pipeline ` will download and cache the default pretrained model associated with the task. This can take a while, but subsequent calls will be much faster.
@@ -30,14 +30,14 @@ By default, models will be downloaded from the [Hugging Face Hub](https://huggin
3030You can now use the classifier on your target text by calling it as a function:
3131
3232``` javascript
33- let result = await classifier (' I love transformers!' );
33+ const result = await classifier (' I love transformers!' );
3434// [{'label': 'POSITIVE', 'score': 0.9998}]
3535```
3636
3737If you have multiple inputs, you can pass them as an array:
3838
3939``` javascript
40- let result = await classifier ([' I love transformers!' , ' I hate transformers!' ]);
40+ const result = await classifier ([' I love transformers!' , ' I hate transformers!' ]);
4141// [{'label': 'POSITIVE', 'score': 0.9998}, {'label': 'NEGATIVE', 'score': 0.9982}]
4242```
4343
@@ -46,9 +46,9 @@ You can also specify a different model to use for the pipeline by passing it as
4646<!-- TODO: REPLACE 'nlptown/bert-base-multilingual-uncased-sentiment' with 'nlptown/bert-base-multilingual-uncased-sentiment'-->
4747
4848``` javascript
49- let reviewer = await pipeline (' sentiment-analysis' , ' Xenova/bert-base-multilingual-uncased-sentiment' );
49+ const reviewer = await pipeline (' sentiment-analysis' , ' Xenova/bert-base-multilingual-uncased-sentiment' );
5050
51- let result = await reviewer (' The Shawshank Redemption is a true masterpiece of cinema.' );
51+ const result = await reviewer (' The Shawshank Redemption is a true masterpiece of cinema.' );
5252// [{label: '5 stars', score: 0.8167929649353027}]
5353```
5454
@@ -59,10 +59,10 @@ The `pipeline()` function is a great way to quickly use a pretrained model for i
5959<!-- TODO: Replace 'Xenova/whisper-small.en' with 'openai/whisper-small.en' -->
6060``` javascript
6161// Allocate a pipeline for Automatic Speech Recognition
62- let transcriber = await pipeline (' automatic-speech-recognition' , ' Xenova/whisper-small.en' );
62+ const transcriber = await pipeline (' automatic-speech-recognition' , ' Xenova/whisper-small.en' );
6363
6464// Transcribe an audio file, loaded from a URL.
65- let result = await transcriber (' https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac' );
65+ const result = await transcriber (' https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac' );
6666// {text: ' I have a dream that one day this nation will rise up and live out the true meaning of its creed.'}
6767```
6868
@@ -86,7 +86,7 @@ You can also specify which revision of the model to use, by passing a `revision`
8686Since the Hugging Face Hub uses a git-based versioning system, you can use any valid git revision specifier (e.g., branch name or commit hash)
8787
8888``` javascript
89- let transcriber = await pipeline (' automatic-speech-recognition' , ' Xenova/whisper-tiny.en' , {
89+ const transcriber = await pipeline (' automatic-speech-recognition' , ' Xenova/whisper-tiny.en' , {
9090 revision: ' output_attentions' ,
9191});
9292```
@@ -100,17 +100,17 @@ Many pipelines have additional options that you can specify. For example, when u
100100<!-- TODO: Replace 'Xenova/nllb-200-distilled-600M' with 'facebook/nllb-200-distilled-600M' -->
101101``` javascript
102102// Allocation a pipeline for translation
103- let translator = await pipeline (' translation' , ' Xenova/nllb-200-distilled-600M' );
103+ const translator = await pipeline (' translation' , ' Xenova/nllb-200-distilled-600M' );
104104
105105// Translate from English to Greek
106- let result = await translator (' I like to walk my dog.' , {
106+ const result = await translator (' I like to walk my dog.' , {
107107 src_lang: ' eng_Latn' ,
108108 tgt_lang: ' ell_Grek'
109109});
110110// [ { translation_text: 'Μου αρέσει να περπατάω το σκυλί μου.' } ]
111111
112112// Translate back to English
113- let result2 = await translator (result[0 ].translation_text , {
113+ const result2 = await translator (result[0 ].translation_text , {
114114 src_lang: ' ell_Grek' ,
115115 tgt_lang: ' eng_Latn'
116116});
@@ -125,8 +125,8 @@ For example, to generate a poem using `LaMini-Flan-T5-783M`, you can do:
125125
126126``` javascript
127127// Allocate a pipeline for text2text-generation
128- let poet = await pipeline (' text2text-generation' , ' Xenova/LaMini-Flan-T5-783M' );
129- let result = await poet (' Write me a love poem about cheese.' , {
128+ const poet = await pipeline (' text2text-generation' , ' Xenova/LaMini-Flan-T5-783M' );
129+ const result = await poet (' Write me a love poem about cheese.' , {
130130 max_new_tokens: 200 ,
131131 temperature: 0.9 ,
132132 repetition_penalty: 2.0 ,
0 commit comments