|
| 1 | +import { PreTrainedTokenizer, GlmForCausalLM } from "../../../src/transformers.js"; |
| 2 | + |
| 3 | +import { MAX_MODEL_LOAD_TIME, MAX_TEST_EXECUTION_TIME, MAX_MODEL_DISPOSE_TIME, DEFAULT_MODEL_OPTIONS } from "../../init.js"; |
| 4 | + |
| 5 | +export default () => { |
| 6 | + describe("GlmForCausalLM", () => { |
| 7 | + const model_id = "hf-internal-testing/tiny-random-GlmForCausalLM"; |
| 8 | + /** @type {GlmForCausalLM} */ |
| 9 | + let model; |
| 10 | + /** @type {PreTrainedTokenizer} */ |
| 11 | + let tokenizer; |
| 12 | + beforeAll(async () => { |
| 13 | + model = await GlmForCausalLM.from_pretrained(model_id, DEFAULT_MODEL_OPTIONS); |
| 14 | + tokenizer = await PreTrainedTokenizer.from_pretrained(model_id); |
| 15 | + tokenizer.padding_side = "left"; |
| 16 | + }, MAX_MODEL_LOAD_TIME); |
| 17 | + |
| 18 | + it( |
| 19 | + "batch_size=1", |
| 20 | + async () => { |
| 21 | + const inputs = tokenizer("hello"); |
| 22 | + const outputs = await model.generate({ |
| 23 | + ...inputs, |
| 24 | + max_length: 10, |
| 25 | + }); |
| 26 | + expect(outputs.tolist()).toEqual([[23582n, 5797n, 38238n, 24486n, 36539n, 34489n, 6948n, 34489n, 6948n, 16014n]]); |
| 27 | + }, |
| 28 | + MAX_TEST_EXECUTION_TIME, |
| 29 | + ); |
| 30 | + |
| 31 | + it( |
| 32 | + "batch_size>1", |
| 33 | + async () => { |
| 34 | + const inputs = tokenizer(["hello", "hello world"], { padding: true }); |
| 35 | + const outputs = await model.generate({ |
| 36 | + ...inputs, |
| 37 | + max_length: 10, |
| 38 | + }); |
| 39 | + expect(outputs.tolist()).toEqual([ |
| 40 | + [59246n, 23582n, 5797n, 38238n, 24486n, 36539n, 34489n, 6948n, 34489n, 6948n], |
| 41 | + [23582n, 2901n, 39936n, 25036n, 55411n, 10337n, 3424n, 39183n, 30430n, 37285n], |
| 42 | + ]); |
| 43 | + }, |
| 44 | + MAX_TEST_EXECUTION_TIME, |
| 45 | + ); |
| 46 | + |
| 47 | + afterAll(async () => { |
| 48 | + await model?.dispose(); |
| 49 | + }, MAX_MODEL_DISPOSE_TIME); |
| 50 | + }); |
| 51 | +}; |
0 commit comments