Commit a96fa5a
committed
Optimize tensor.slice()
The performance of executing `tensor.slice()` is super poor, especially for
the 'logits' tensor with large dimensions.
```
const logits = outputs.logits.slice(null, -1, null);`
```
This is because currently implementation of the `slice` method manually iterates
through each element and calculate indices which is a big time consuming if
the tensor shape is large.
For cases like `slice(null, -1, null)`, where the slicing operation is
contiguous along certain dimensions, which can be optimized by bulk copy
by using `TypeArray.subarray()` and `TypeArray.set()`.1 parent 82206db commit a96fa5a
1 file changed
+38
-7
lines changed| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
443 | 443 | | |
444 | 444 | | |
445 | 445 | | |
446 | | - | |
447 | | - | |
448 | | - | |
449 | | - | |
450 | | - | |
451 | | - | |
| 446 | + | |
| 447 | + | |
| 448 | + | |
| 449 | + | |
| 450 | + | |
| 451 | + | |
452 | 452 | | |
453 | | - | |
454 | 453 | | |
| 454 | + | |
| 455 | + | |
| 456 | + | |
| 457 | + | |
| 458 | + | |
| 459 | + | |
| 460 | + | |
| 461 | + | |
| 462 | + | |
| 463 | + | |
| 464 | + | |
| 465 | + | |
| 466 | + | |
| 467 | + | |
| 468 | + | |
| 469 | + | |
| 470 | + | |
| 471 | + | |
| 472 | + | |
| 473 | + | |
| 474 | + | |
| 475 | + | |
| 476 | + | |
| 477 | + | |
| 478 | + | |
| 479 | + | |
| 480 | + | |
| 481 | + | |
| 482 | + | |
| 483 | + | |
| 484 | + | |
| 485 | + | |
455 | 486 | | |
456 | 487 | | |
457 | 488 | | |
| |||
0 commit comments