Skip to content

Commit 9f38763

Browse files
authored
🌐 [i18n-KO] Translated pipeline_gradio.md to Korean (#39520)
* docs: ko: pipeline_gradio.md * feat: nmt draft * fix: manual edits * docs: ko: pipeline_gradio.md
1 parent f723117 commit 9f38763

File tree

2 files changed

+54
-2
lines changed

2 files changed

+54
-2
lines changed

docs/source/ko/_toctree.yml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -50,8 +50,8 @@
5050
- sections:
5151
- local: pipeline_tutorial
5252
title: Pipeline으로 추론하기
53-
- local: in_translation
54-
title: (번역중) Machine learning apps
53+
- local: pipeline_gradio
54+
title: 머신러닝 앱
5555
- local: pipeline_webserver
5656
title: 추론 웹 서버를 위한 파이프라인
5757
- local: add_new_pipeline

docs/source/ko/pipeline_gradio.md

Lines changed: 52 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,52 @@
1+
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
2+
3+
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
4+
the License. You may obtain a copy of the License at
5+
6+
http://www.apache.org/licenses/LICENSE-2.0
7+
8+
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
9+
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10+
specific language governing permissions and limitations under the License.
11+
12+
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
13+
rendered properly in your Markdown viewer.
14+
15+
-->
16+
17+
# 머신러닝 앱 [[machine-learning-apps]]
18+
19+
머신러닝 앱을 빠르고 쉽게 구축하고 공유할 수 있는 라이브러리인 [Gradio](https://www.gradio.app/)[`Pipeline`]과 통합되어 추론을 위한 간단한 인터페이스를 빠르게 생성할 수 있습니다.
20+
21+
시작하기 전에 Gradio가 설치되어 있는지 확인하세요.
22+
23+
```py
24+
!pip install gradio
25+
```
26+
27+
원하는 작업에 맞는 pipeline을 생성한 다음, Gradio의 [Interface.from_pipeline](https://www.gradio.app/docs/gradio/interface#interface-from_pipeline) 함수에 전달하여 인터페이스를 만드세요. Gradio는 [`Pipeline`]에 맞는 입력 및 출력 컴포넌트를 자동으로 결정합니다.
28+
29+
[launch](https://www.gradio.app/main/docs/gradio/blocks#blocks-launch)를 추가하여 웹 서버를 생성하고 앱을 시작하세요.
30+
31+
```py
32+
from transformers import pipeline
33+
import gradio as gr
34+
35+
pipeline = pipeline("image-classification", model="google/vit-base-patch16-224")
36+
gr.Interface.from_pipeline(pipeline).launch()
37+
```
38+
39+
웹 앱은 기본적으로 로컬 서버에서 실행됩니다. 다른 사용자와 앱을 공유하려면 [launch](https://www.gradio.app/main/docs/gradio/blocks#blocks-launch)에서 `share=True`로 설정하여 임시 공개 링크를 생성하세요. 더 지속적인 솔루션을 원한다면 Hugging Face [Spaces](https://hf.co/spaces)에서 앱을 호스팅하세요.
40+
41+
```py
42+
gr.Interface.from_pipeline(pipeline).launch(share=True)
43+
```
44+
45+
아래 Space는 위 코드를 사용하여 생성되었으며, Spaces에서 호스팅됩니다.
46+
47+
<iframe
48+
src="https://stevhliu-gradio-pipeline-demo.hf.space"
49+
frameborder="0"
50+
width="850"
51+
height="850"
52+
></iframe>

0 commit comments

Comments
 (0)