Skip to content

Commit 6209fed

Browse files
committed
Update 3_numerical.rst
1 parent 318a2ae commit 6209fed

File tree

1 file changed

+9
-10
lines changed

1 file changed

+9
-10
lines changed

source/3_numerical.rst

Lines changed: 9 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -39,28 +39,27 @@ The first-order explicit Euler scheme advances the position by sampling the velo
3939
\mathbf{u}_n = \mathbf{u}(\mathbf{x}_n,t_n),\\
4040
\mathbf{x}_{n+1} = \mathbf{x}_n + \sigma\,\Delta t\,\mathbf{u}_n.
4141
42-
This method incurs a global error of order :math:`O(\Delta t)` and requires only one velocity evaluation per step.
42+
This method incurs a global error of order :math:`O(\Delta t)` and requires only one velocity evaluation per step, therefore has high computational speed.
4343

4444
**Runge-Kutta Method**
4545

4646
In an explicit :math:`s`-stage Runge–Kutta method for the initial-value problem:
4747

4848
.. math::
4949
50-
y' = f(t,y), \quad y(t_n) = y_n.
50+
\mathbf{x}' = \mathbf{u}(\mathbf{x},t), \quad \mathbf{x}(t_n) = \mathbf{x}_n.
5151
52-
One advances the solution by a step :math:`h` as follows. First compute the intermediate slopes:
52+
One advances the solution by a step :math:h as follows. First compute the intermediate velocities:
5353

5454
.. math::
5555
56-
k_i = f\Bigl(t_n + c_i\,h,\;y_n + h \sum_{j=1}^{i-1} a_{ij}\,k_j\Bigr),
57-
\quad i = 1,2,\dots,s\,,
56+
\mathbf{k}i = \mathbf{u}\Bigl(\mathbf{x}n + h \sum{j=1}^{i-1} a{ij},\mathbf{k}_j,;t_n + c_i,h\Bigr), \quad i = 1,2,\dots,s,,
5857
5958
and then form the new approximation by:
6059

6160
.. math::
6261
63-
y_{n+1} = y_n + h \sum_{i=1}^s b_i\,k_i.
62+
\mathbf{x}_{n+1} = \mathbf{x}n + h \sum{i=1}^s b_i,\mathbf{k}_i.
6463
6564
6665
**Second-Order Runge-Kutta (RK2, Heun's)**
@@ -69,10 +68,10 @@ Heun's ``RK2`` method attains second-order accuracy by combining predictor and c
6968

7069
.. math::
7170
72-
k_1 &= \sigma\,\mathbf{u}(\mathbf{x}_n,t_n),\\
73-
\mathbf{x}^* &= \mathbf{x}_n + \Delta t\,k_1,\\
74-
k_2 &= \sigma\,\mathbf{u}(\mathbf{x}^*,t_n + \Delta t),\\
75-
\mathbf{x}_{n+1} &= \mathbf{x}_n + \tfrac{\Delta t}{2}\,(k_1 + k_2).
71+
k_1 = \sigma\,\mathbf{u}(\mathbf{x}_n,t_n),\\
72+
\mathbf{x}^* = \mathbf{x}_n + \Delta t\,k_1,\\
73+
k_2 = \sigma\,\mathbf{u}(\mathbf{x}^*,t_n + \Delta t),\\
74+
\mathbf{x}_{n+1} = \mathbf{x}_n + \tfrac{\Delta t}{2}\,(k_1 + k_2).
7675
7776
This scheme yields a global error of order :math:`O(\Delta t^2)` with two velocity evaluations per step.
7877

0 commit comments

Comments
 (0)