Skip to content

Commit 961d6b1

Browse files
committed
Update 3_numerical.rst
1 parent 18c78e4 commit 961d6b1

File tree

1 file changed

+2
-6
lines changed

1 file changed

+2
-6
lines changed

source/3_numerical.rst

Lines changed: 2 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ Time Integration
1818

1919
In the numerical computation of the FTLE (Finite-Time Lyapunov Exponent), we first compute the *flow map* :math:`\varphi_{t_n}^{t_{n+1}}(y_n)`, which maps the initial point :math:`y_n` at time :math:`t_n` to time :math:`t_{n+1}`.
2020

21-
To obtain this map, one must numerically integrate the underlying dynamical system, which is described by the ordinary differential equation (ODE)::
21+
To obtain this map, one must numerically integrate the underlying dynamical system, which is described by the ordinary differential equation (ODE):
2222

2323
.. math::
2424
@@ -33,10 +33,8 @@ The first-order explicit Euler scheme advances the position by sampling the velo
3333

3434
.. math::
3535
36-
\begin{aligned}
3736
\mathbf{u}_n = \mathbf{u}(\mathbf{x}_n,t_n),\\
3837
\mathbf{x}_{n+1} = \mathbf{x}_n + \sigma\,\Delta t\,\mathbf{u}_n.
39-
\end{aligned}
4038
4139
This method incurs a global error of order :math:`O(\Delta t)` and requires only one velocity evaluation per step.
4240

@@ -53,7 +51,7 @@ One advances the solution by a step :math:`h` as follows. First compute the inte
5351
.. math::
5452
5553
k_i = f\Bigl(t_n + c_i\,h,\;y_n + h \sum_{j=1}^{i-1} a_{ij}\,k_j\Bigr),
56-
\quad i = 1,2,\dots,s,
54+
\quad i = 1,2,\dots,s\,,
5755
5856
and then form the new approximation by:
5957

@@ -68,12 +66,10 @@ Heun's method attains second-order accuracy by combining predictor and corrector
6866

6967
.. math::
7068
71-
\begin{aligned}
7269
k_1 &= \sigma\,\mathbf{u}(\mathbf{x}_n,t_n),\\
7370
\mathbf{x}^* &= \mathbf{x}_n + \Delta t\,k_1,\\
7471
k_2 &= \sigma\,\mathbf{u}(\mathbf{x}^*,t_n + \Delta t),\\
7572
\mathbf{x}_{n+1} &= \mathbf{x}_n + \tfrac{\Delta t}{2}\,(k_1 + k_2).
76-
\end{aligned}
7773
7874
This scheme yields a global error of order :math:`O(\Delta t^2)` with two velocity evaluations per step.
7975

0 commit comments

Comments
 (0)