Skip to content

Commit ed157cb

Browse files
committed
Update 3_numerical.rst
1 parent 4b88f8a commit ed157cb

File tree

1 file changed

+8
-9
lines changed

1 file changed

+8
-9
lines changed

source/3_numerical.rst

Lines changed: 8 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -45,8 +45,7 @@ This method incurs a global error of order :math:`O(\Delta t)` and requires only
4545

4646
Proposed by Carl Runge and Martin Kutta around 1900, Runge-Kutta methods constitute a widely used family of algorithms for the numerical integration of ODEs.
4747

48-
In an explicit :math:`s`-stage Runge-Kutta scheme for this initial-value problem, the solution is advanced over a time step :math:`h` as follows:
49-
48+
In an explicit :math:`s`-stage Runge-Kutta scheme for this initial-value problem, the solution is advanced over a time step :math:`\Delta t` as follows.
5049
First, compute the intermediate stage vectors:
5150

5251
.. math::
@@ -56,20 +55,20 @@ First, compute the intermediate stage vectors:
5655
\mathbf{u}!\Bigl(
5756
\mathbf{x}n
5857
;+;
59-
h \sum{j=1}^{i-1} a{ij},\mathbf{k}_j,
60-
; t_n + c_i h
58+
\Delta t \sum_{j=1}^{i-1} a_{ij},\mathbf{k}_j,
59+
; t_n + c_i \Delta t
6160
\Bigr),
6261
\qquad i = 1, 2, \dots, s,
6362
6463
and then update the solution:
6564

6665
.. math::
6766
68-
\mathbf{x}_{n+1}
69-
;=;
70-
\mathbf{x}n
71-
;+;
72-
h \sum{i=1}^{s} b_i,\mathbf{k}_i.
67+
\mathbf{x}_{n+1}
68+
;=;
69+
\mathbf{x}n
70+
;+;
71+
\Delta t \sum{i=1}^{s} b_i,\mathbf{k}_i.
7372
7473
Here, the boldface stage variables :math:`\mathbf{k}_i` represent intermediate slope estimates.
7574

0 commit comments

Comments
 (0)