11---
22title : iExec for AI
3- description : How iExec helps develop, deploy and execute confidential AI applications with framework support
3+ description :
4+ How iExec helps develop, deploy and execute confidential AI applications with
5+ framework support
46---
57
68# 🧠 iExec for AI
79
8- The iExec Platform delivers powerful tools specifically for AI developers. Build, deploy, and execute confidential AI applications with enterprise-grade security and decentralized infrastructure.
10+ The iExec Platform delivers powerful tools specifically for AI developers.
11+ Build, deploy, and execute confidential AI applications with enterprise-grade
12+ security and decentralized infrastructure.
913
1014## 🚀 Quick Start
1115
1216** Want to get started immediately?**
13- - 📚 ** [ AI Frameworks Hello World] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world ) ** - Ready-to-use Docker examples for TensorFlow, PyTorch, and more
14- - 🛠️ ** [ Build & Deploy] ( /guides/build-iapp/build-&-deploy ) ** - General iApp development guide (not AI-specific)
15- - 🔬 ** [ TDX App Guide] ( /guides/build-iapp/advanced/create-your-first-tdx-app ) ** - Build TDX applications (works well for AI workloads)
17+
18+ - 📚
19+ ** [ AI Frameworks Hello World] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world ) ** -
20+ Ready-to-use Docker examples for TensorFlow, PyTorch, and more
21+ - 🛠️ ** [ Build & Deploy] ( /guides/build-iapp/build-&-deploy ) ** - General iApp
22+ development guide (not AI-specific)
23+ - 🔬
24+ ** [ TDX App Guide] ( /guides/build-iapp/advanced/create-your-first-tdx-app ) ** -
25+ Build TDX applications (works well for AI workloads)
1626
1727## 🛡️ Why iExec for AI?
1828
1929### Confidential Computing
20- Your AI models and data are protected end-to-end using Trusted Execution Environments (TEEs):
30+
31+ Your AI models and data are protected end-to-end using Trusted Execution
32+ Environments (TEEs):
33+
2134- ** Data Privacy** : AI computations are encrypted throughout processing
22- - ** Secure Training & Inference** : Models and data can never be accessed by unauthorized entities
23- - ** Hardware-Level Security** : Intel SGX and TDX provide military-grade protection
35+ - ** Secure Training & Inference** : Models and data can never be accessed by
36+ unauthorized entities
37+ - ** Hardware-Level Security** : Intel SGX and TDX provide military-grade
38+ protection
2439
2540### AI Monetization
41+
2642Monetize your AI assets easily and securely:
43+
2744- ** Datasets** : Encrypt and sell access to your training data
2845- ** Models** : Deploy and monetize your trained AI models
2946- ** Agents** : Create and sell AI agents and applications
3047- ** Ownership Preserved** : Your digital assets always remain yours
3148
3249### Decentralized Infrastructure
50+
3351Scale AI applications without centralized cloud dependencies:
52+
3453- ** On-Demand Compute** : Access powerful resources when you need them
3554- ** Fair Pricing** : Transparent, blockchain-verified execution costs
3655- ** Global Network** : Deploy across a worldwide network of secure workers
@@ -39,30 +58,33 @@ Scale AI applications without centralized cloud dependencies:
3958
4059### Overview
4160
42- | Framework | TDX Support | SGX Support | Best For |
43- | -----------| -------------| -------------| ----------|
44- | ** TensorFlow** | ✅ Yes (3.01GB) | ❌ No | Deep learning, production ML |
45- | ** PyTorch** | ✅ Yes (6.44GB) | ❌ No | Research, computer vision |
61+ | Framework | TDX Support | SGX Support | Best For |
62+ | ---------------- | --------------- | --------------- | ----------------------------- |
63+ | ** TensorFlow** | ✅ Yes (3.01GB) | ❌ No | Deep learning, production ML |
64+ | ** PyTorch** | ✅ Yes (6.44GB) | ❌ No | Research, computer vision |
4665| ** Scikit-learn** | ✅ Yes (1.18GB) | ✅ Yes (1.01GB) | Traditional ML, data analysis |
47- | ** OpenVINO** | ✅ Yes (1.82GB) | ❌ No | Computer vision, inference |
48- | ** NumPy** | ✅ Yes (1.25GB) | ✅ Yes (1.08GB) | Scientific computing |
49- | ** Matplotlib** | ✅ Yes (1.25GB) | ✅ Yes (1.08GB) | Data visualization |
66+ | ** OpenVINO** | ✅ Yes (1.82GB) | ❌ No | Computer vision, inference |
67+ | ** NumPy** | ✅ Yes (1.25GB) | ✅ Yes (1.08GB) | Scientific computing |
68+ | ** Matplotlib** | ✅ Yes (1.25GB) | ✅ Yes (1.08GB) | Data visualization |
5069
5170### Framework Details
5271
53- | Framework | Version | Description | TDX Support | SGX Support | Use Cases | Resources |
54- | -----------| ---------| -------------| -------------| ------------- | -----------| -----------|
55- | ** TensorFlow** | 2.19.0 | Google's ML framework for production AI | ✅ 3.01GB | ❌ Too large | Deep learning, CV, NLP | [ Docs] ( https://www.tensorflow.org/ ) • [ Quickstart] ( https://www.tensorflow.org/tutorials/quickstart/beginner ) • [ Docker] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world/tree/main/tensorflow ) |
56- | ** PyTorch** | 2.7.0+cu126 | Facebook's research-focused DL framework | ✅ 6.44GB | ❌ Too large | Research, DL, CV, NLP | [ Docs] ( https://pytorch.org/docs/ ) • [ Quickstart] ( https://docs.pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html ) • [ Docker] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world/tree/main/pytorch ) |
57- | ** Scikit-learn** | 1.6.1 | Comprehensive ML library for Python | ✅ 1.18GB | ✅ 1.01GB | Classification, regression, clustering | [ Docs] ( https://scikit-learn.org/stable/ ) • [ Examples] ( https://scikit-learn.org/stable/auto_examples/index.html ) • [ Docker] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world/tree/main/scikit ) |
58- | ** OpenVINO** | 2024.6.0 | Intel's high-performance AI inference toolkit | ✅ 1.82GB | ❌ Execution issues | Computer vision, inference | [ Docs] ( https://docs.openvino.ai/ ) • [ Tutorial] ( https://docs.openvino.ai/2023.3/notebooks/004-hello-detection-with-output.html ) • [ Docker] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world/tree/main/openvino ) |
59- | ** NumPy** | 2.0.2 | Fundamental package for scientific computing | ✅ 1.25GB | ✅ 1.08GB | Scientific computing, data analysis | [ Docs] ( https://numpy.org/doc/ ) • [ User Guide] ( https://numpy.org/doc/stable/user/index.html ) • [ Docker] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world/tree/main/numpy ) |
60- | ** Matplotlib** | 3.9.4 | Comprehensive library for data visualization | ✅ 1.25GB | ✅ 1.08GB | Data visualization, plotting | [ Docs] ( https://matplotlib.org/ ) • [ Gallery] ( https://matplotlib.org/stable/gallery/index.html ) • [ Docker] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world/tree/main/matplotlib ) |
72+ | Framework | Version | Description | TDX Support | SGX Support | Use Cases | Resources |
73+ | ---------------- | ----------- | --------------------------------------------- | ----------- | ------------------- | -------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
74+ | ** TensorFlow** | 2.19.0 | Google's ML framework for production AI | ✅ 3.01GB | ❌ Too large | Deep learning, CV, NLP | [ Docs] ( https://www.tensorflow.org/ ) • [ Quickstart] ( https://www.tensorflow.org/tutorials/quickstart/beginner ) • [ Docker] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world/tree/main/tensorflow ) |
75+ | ** PyTorch** | 2.7.0+cu126 | Facebook's research-focused DL framework | ✅ 6.44GB | ❌ Too large | Research, DL, CV, NLP | [ Docs] ( https://pytorch.org/docs/ ) • [ Quickstart] ( https://docs.pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html ) • [ Docker] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world/tree/main/pytorch ) |
76+ | ** Scikit-learn** | 1.6.1 | Comprehensive ML library for Python | ✅ 1.18GB | ✅ 1.01GB | Classification, regression, clustering | [ Docs] ( https://scikit-learn.org/stable/ ) • [ Examples] ( https://scikit-learn.org/stable/auto_examples/index.html ) • [ Docker] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world/tree/main/scikit ) |
77+ | ** OpenVINO** | 2024.6.0 | Intel's high-performance AI inference toolkit | ✅ 1.82GB | ❌ Execution issues | Computer vision, inference | [ Docs] ( https://docs.openvino.ai/ ) • [ Tutorial] ( https://docs.openvino.ai/2023.3/notebooks/004-hello-detection-with-output.html ) • [ Docker] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world/tree/main/openvino ) |
78+ | ** NumPy** | 2.0.2 | Fundamental package for scientific computing | ✅ 1.25GB | ✅ 1.08GB | Scientific computing, data analysis | [ Docs] ( https://numpy.org/doc/ ) • [ User Guide] ( https://numpy.org/doc/stable/user/index.html ) • [ Docker] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world/tree/main/numpy ) |
79+ | ** Matplotlib** | 3.9.4 | Comprehensive library for data visualization | ✅ 1.25GB | ✅ 1.08GB | Data visualization, plotting | [ Docs] ( https://matplotlib.org/ ) • [ Gallery] ( https://matplotlib.org/stable/gallery/index.html ) • [ Docker] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world/tree/main/matplotlib ) |
6180
6281## 🐳 Getting Started with Docker Examples
6382
6483### What's Included
65- Our [ AI Frameworks Hello World repository] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world ) provides ready-to-use examples:
84+
85+ Our
86+ [ AI Frameworks Hello World repository] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world )
87+ provides ready-to-use examples:
6688
6789```
6890ai-frameworks-hello-world/
@@ -75,6 +97,7 @@ ai-frameworks-hello-world/
7597```
7698
7799### Quick Start Commands
100+
78101``` bash
79102# Clone the repository
80103git clone https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world.git
@@ -92,6 +115,7 @@ docker run --rm hello-pytorch
92115```
93116
94117### Features
118+
95119- ** ✅ Isolated Testing** : Each framework runs in its own container
96120- ** ✅ Reproducible** : Consistent environment across systems
97121- ** ✅ TDX Ready** : All containers tested for Intel TDX compatibility
@@ -101,38 +125,50 @@ docker run --rm hello-pytorch
101125
102126### TDX vs SGX for AI
103127
104- | Feature | Intel TDX | Intel SGX |
105- | ---------| -----------| -----------|
106- | ** Memory Limit** | Multi-GB+ | ~ 1.95GB |
107- | ** Framework Support** | All major frameworks | Limited (Scikit-learn, NumPy) |
108- | ** Code Changes** | Minimal ("lift and shift") | Significant modifications required |
109- | ** Production Ready** | ✅ Yes | ⚠️ Limited |
110- | ** AI Workloads** | ✅ Excellent | ❌ Restricted |
128+ | Feature | Intel TDX | Intel SGX |
129+ | --------------------- | -------------------------- | ---------------------------------- |
130+ | ** Memory Limit** | Multi-GB+ | ~ 1.95GB |
131+ | ** Framework Support** | All major frameworks | Limited (Scikit-learn, NumPy) |
132+ | ** Code Changes** | Minimal ("lift and shift") | Significant modifications required |
133+ | ** Production Ready** | ✅ Yes | ⚠️ Limited |
134+ | ** AI Workloads** | ✅ Excellent | ❌ Restricted |
111135
112136### Recommendations
113137
114138#### For Production AI Applications
139+
115140- ** Use TDX** for TensorFlow, PyTorch, and OpenVINO
116141- ** Use SGX** for lightweight ML with Scikit-learn and NumPy
117142
118143#### For Development and Testing
144+
119145- ** Start with SGX** for simple ML tasks
120146- ** Migrate to TDX** for complex AI workloads
121147
122-
123148## 📚 Next Steps
124149
125150### Learn TEE Technologies
126- - ** [ Intel SGX Technology] ( /get-started/protocol/tee/intel-sgx ) ** - SGX limitations and capabilities
127- - ** [ Intel TDX Technology] ( /get-started/protocol/tee/intel-tdx ) ** - TDX advantages for AI
128- - ** [ SGX vs TDX Comparison] ( /get-started/protocol/tee/sgx-vs-tdx ) ** - Detailed comparison
151+
152+ - ** [ Intel SGX Technology] ( /get-started/protocol/tee/intel-sgx ) ** - SGX
153+ limitations and capabilities
154+ - ** [ Intel TDX Technology] ( /get-started/protocol/tee/intel-tdx ) ** - TDX
155+ advantages for AI
156+ - ** [ SGX vs TDX Comparison] ( /get-started/protocol/tee/sgx-vs-tdx ) ** - Detailed
157+ comparison
129158
130159### Build AI Applications
131- - ** [ Build & Deploy] ( /guides/build-iapp/build-&-deploy ) ** - Create your first AI application
132- - ** [ Build Intel TDX App] ( /guides/build-iapp/advanced/create-your-first-tdx-app ) ** - TDX applications for AI workloads
133- - ** [ Inputs and Outputs] ( /guides/build-iapp/inputs-and-outputs ) ** - Handle data flow in TEE environment
160+
161+ - ** [ Build & Deploy] ( /guides/build-iapp/build-&-deploy ) ** - Create your first AI
162+ application
163+ - ** [ Build Intel TDX App] ( /guides/build-iapp/advanced/create-your-first-tdx-app ) ** -
164+ TDX applications for AI workloads
165+ - ** [ Inputs and Outputs] ( /guides/build-iapp/inputs-and-outputs ) ** - Handle data
166+ flow in TEE environment
134167
135168### Explore Examples
136- - ** [ AI Frameworks Hello World] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world ) ** - Ready-to-use Docker examples
169+
170+ - ** [ AI Frameworks Hello World] ( https://github.com/iExecBlockchainComputing/ai-frameworks-hello-world ) ** -
171+ Ready-to-use Docker examples
137172- ** [ iExec Discord] ( https://discord.com/invite/pbt9m98wnU ) ** - Community support
138- - ** [ Protocol Documentation] ( https://protocol.docs.iex.ec ) ** - Technical deep dive
173+ - ** [ Protocol Documentation] ( https://protocol.docs.iex.ec ) ** - Technical deep
174+ dive
0 commit comments