You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
- 2022-08-25 -> DHG's first version **v0.9.1** is now available!
23
+
- 2022-08-25 -> DHG的第一个版本 **v0.9.1** 正式发布!
26
24
27
25
28
26
**DHG***(DeepHypergraph)* is a deep learning library built upon [PyTorch](https://pytorch.org) for learning with both Graph Neural Networks and Hypergraph Neural Networks. It is a general framework that supports both low-order and high-order message passing like **from vertex to vertex**, **from vertex in one domain to vertex in another domain**, **from vertex to hyperedge**, **from hyperedge to vertex**, **from vertex set to vertex set**.
@@ -71,13 +69,13 @@ The Optuna library endows DHG with the Auto-ML ability. DHG supports automatical
71
69
## Installation
72
70
73
71
74
-
Current, the stable version of **DHG** is 0.9.1. You can install it with ``pip`` as follows:
72
+
Current, the stable version of **DHG** is 0.9.2. You can install it with ``pip`` as follows:
75
73
76
74
```python
77
75
pip install dhg
78
76
```
79
77
80
-
You can also try the nightly version (0.9.2) of **DHG** library with ``pip`` as follows:
78
+
You can also try the nightly version (0.9.3) of **DHG** library with ``pip`` as follows:
@@ -269,7 +267,13 @@ Currently, we have added the following datasets:
269
267
270
268
-**[Citeseer](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Citeseer.html#dhg.data.Citeseer)**: A citation network dataset for vertex classification task.
271
269
272
-
-**[Cooking200](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Cooking200.html#dhg.data.Cooking200)**: A cooking recipe dataset for vertex classification task.
270
+
-**[BlogCatalog](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.BlogCatalog.html#dhg.data.BlogCatalog)**: A social network dataset for vertex classification task.
271
+
272
+
-**[Flickr](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Flickr.html#dhg.data.Flickr)**: A social network dataset for vertex classification task.
273
+
274
+
-**[Github](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Github.html#dhg.data.Github)**: A collaboration network dataset for vertex classification task.
275
+
276
+
-**[Facebook](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Facebook.html#dhg.data.Facebook)**: A social network dataset for vertex classification task.
273
277
274
278
-**[MovieLens1M](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.MovieLens1M.html#dhg.data.MovieLens1M)**: A movie dataset for user-item recommendation task.
275
279
@@ -279,6 +283,34 @@ Currently, we have added the following datasets:
279
283
280
284
-**[Gowalla](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Gowalla.html#dhg.data.Gowalla)**: A location's feedback dataset for user-item recommendation task.
281
285
286
+
-**[TecentBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.TencentBiGraph.html#dhg.data.TencentBiGraph)**: A social network dataset for vertex classification task.
287
+
288
+
-**[CoraBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CoraBiGraph.html#dhg.data.CoraBiGraph)**: A citation network dataset for vertex classification task.
289
+
290
+
-**[PubmedBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.PubmedBiGraph.html#dhg.data.PubmedBiGraph)**: A citation network dataset for vertex classification task.
291
+
292
+
-**[CiteseerBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CiteseerBiGraph.html#dhg.data.CiteseerBiGraph)**: A citation network dataset for vertex classification task.
293
+
294
+
-**[Cooking200](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Cooking200.html#dhg.data.Cooking200)**: A cooking recipe dataset for vertex classification task.
295
+
296
+
-**[CoauthorshipCora](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CoauthorshipCora.html#dhg.data.CoauthorshipCora)**: A citation network dataset for vertex classification task.
297
+
298
+
-**[CoauthorshipDBLP](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CoauthorshipDBLP.html#dhg.data.CoauthorshipDBLP)**: A citation network dataset for vertex classification task.
299
+
300
+
-**[CocitationCora](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CocitationCora.html#dhg.data.CocitationCora)**: A citation network dataset for vertex classification task.
301
+
302
+
-**[CocitationPubmed](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CocitationCiteseer.html#dhg.data.CocitationCiteseer)**: A citation network dataset for vertex classification task.
303
+
304
+
-**[CocitationCiteseer](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CocitationPubmed.html#dhg.data.CocitationPubmed)**: A citation network dataset for vertex classification task.
305
+
306
+
-**[YelpRestaurant](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.YelpRestaurant.html#dhg.data.YelpRestaurant)**: A restaurant-review network dataset for vertex classification task.
307
+
308
+
-**[WalmartTrips](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.WalmartTrips.html#dhg.data.WalmartTrips)**: A user-product network dataset for vertex classification task.
309
+
310
+
-**[HouseCommittees](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.HouseCommittees.html#dhg.data.HouseCommittees)**: A committee network dataset for vertex classification task.
311
+
312
+
-**[News20](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.News20.html#dhg.data.News20)**: A newspaper network dataset for vertex classification task.
313
+
282
314
## Metrics
283
315
284
316
### Classification Metrics
@@ -327,6 +359,10 @@ Currently, we have added the following datasets:
327
359
328
360
-**[LightGCN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.LightGCN.html#dhg.models.LightGCN)** model of [LightGCN: Lightweight Graph Convolutional Networks](https://arxiv.org/pdf/2002.02126) paper (SIGIR 2020).
329
361
362
+
-**[BGNN-Adv](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.BGNN_Adv.html#dhg.models.BGNN_Adv)** model of [Cascade-BGNN: Toward Efficient Self-supervised Representation Learning on Large-scale Bipartite Graphs](https://arxiv.org/pdf/1906.11994.pdf) paper (TNNLS 2020).
363
+
364
+
-**[BGNN-MLP](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.BGNN_MLP.html#dhg.models.BGNN_MLP)** model of [Cascade-BGNN: Toward Efficient Self-supervised Representation Learning on Large-scale Bipartite Graphs](https://arxiv.org/pdf/1906.11994.pdf) paper (TNNLS 2020).
365
+
330
366
331
367
### On High-Order Structures
332
368
@@ -336,9 +372,17 @@ Currently, we have added the following datasets:
336
372
337
373
-**[HyperGCN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.HyperGCN.html#dhg.models.HyperGCN)** model of [HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs](https://papers.nips.cc/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf) paper (NeurIPS 2019).
338
374
375
+
-**[DHCF](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.DHCF.html#dhg.models.DHCF)** model of [Dual Channel Hypergraph Collaborative Filtering](https://dl.acm.org/doi/10.1145/3394486.3403253) paper (KDD 2020).
376
+
339
377
-**[HNHN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.HNHN.html#dhg.models.HNHN)** model of [HNHN: Hypergraph Networks with Hyperedge Neurons](https://arxiv.org/pdf/2006.12278.pdf) paper (ICML 2020).
340
378
341
-
-**[DHCF](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.DHCF.html#dhg.models.DHCF)** model of [Dual Channel Hypergraph Collaborative Filtering](https://dl.acm.org/doi/10.1145/3394486.3403253) paper (KDD 2020).
379
+
-**[UniGCN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniGCN.html#dhg.models.UniGCN)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021).
380
+
381
+
-**[UniGAT](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniGAT.html#dhg.models.UniGAT)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021).
382
+
383
+
-**[UniSAGE](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniSAGE.html#dhg.models.UniSAGE)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021).
384
+
385
+
-**[UniGIN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniGIN.html#dhg.models.UniGIN)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021).
Copy file name to clipboardExpand all lines: docs/source/index.rst
+2-7Lines changed: 2 additions & 7 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -12,12 +12,6 @@ DHG Overview
12
12
\part{English}
13
13
\chapter{DHG Overview}
14
14
15
-
.. only:: not latex
16
-
17
-
.. attention::
18
-
19
-
We are rushing the documentation and tutorials, which will be updated twice a day!
20
-
21
15
22
16
**DHG** (*DeepHypergraph*) is a deep learning library built upon `PyTorch <https://pytorch.org/>`_ for learning with both Graph Neural Networks and Hypergraph Neural Networks.
23
17
It is a general framework that supports both low-order and high-order message passing like
@@ -35,7 +29,8 @@ can help you automatically tune the hyper-parameters of your models in training
35
29
36
30
**News**
37
31
38
-
- *2022-08-25* -> The **v0.9.1 release** is now available!
32
+
- 2022-09-25 -> The **v0.9.2** is now available! More datasets, SOTA models, and visualizations are included!
0 commit comments