You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
- 2022-08-25 -> DHG's first version **v0.9.1** is now available!
23
+
- 2022-08-25 -> DHG的第一个版本 **v0.9.1** 正式发布!
26
24
27
25
28
26
**DHG***(DeepHypergraph)* is a deep learning library built upon [PyTorch](https://pytorch.org) for learning with both Graph Neural Networks and Hypergraph Neural Networks. It is a general framework that supports both low-order and high-order message passing like **from vertex to vertex**, **from vertex in one domain to vertex in another domain**, **from vertex to hyperedge**, **from hyperedge to vertex**, **from vertex set to vertex set**.
@@ -71,13 +69,13 @@ The Optuna library endows DHG with the Auto-ML ability. DHG supports automatical
71
69
## Installation
72
70
73
71
74
-
Current, the stable version of **DHG** is 0.9.1. You can install it with ``pip`` as follows:
72
+
Current, the stable version of **DHG** is 0.9.2. You can install it with ``pip`` as follows:
75
73
76
74
```python
77
75
pip install dhg
78
76
```
79
77
80
-
You can also try the nightly version (0.9.2) of **DHG** library with ``pip`` as follows:
78
+
You can also try the nightly version (0.9.3) of **DHG** library with ``pip`` as follows:
@@ -88,6 +86,41 @@ If you find any bugs, please report it to us in [GitHub Issues](https://github.c
88
86
89
87
## Quick Start
90
88
89
+
### Visualization
90
+
91
+
You can draw the graph, hypergraph, directed graph, and bipartite graph with DHG's visualization tool. More details see the [Tutorial](https://deephypergraph.readthedocs.io/en/latest/tutorial/vis_structure.html)
92
+
93
+
94
+

95
+
96
+
```python
97
+
import matplotlib.pyplot as plt
98
+
import dhg
99
+
# draw a graph
100
+
g = dhg.random.graph_Gnm(10, 12)
101
+
g.draw()
102
+
# draw a hypergraph
103
+
hg = dhg.random.hypergraph_Gnm(10, 8)
104
+
hg.draw()
105
+
# show figures
106
+
plt.show()
107
+
```
108
+
109
+

110
+
111
+
```python
112
+
import matplotlib.pyplot as plt
113
+
import dhg
114
+
# draw a directed graph
115
+
g = dhg.random.digraph_Gnm(12, 18)
116
+
g.draw()
117
+
# draw a bipartite graph
118
+
g = dhg.random.bigraph_Gnm(30, 40, 20)
119
+
g.draw()
120
+
# show figures
121
+
plt.show()
122
+
```
123
+
91
124
### Learning on Low-Order Structures
92
125
93
126
On graph structures, you can smooth a given vertex features with GCN's Laplacian matrix by:
@@ -269,7 +302,13 @@ Currently, we have added the following datasets:
269
302
270
303
-**[Citeseer](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Citeseer.html#dhg.data.Citeseer)**: A citation network dataset for vertex classification task.
271
304
272
-
-**[Cooking200](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Cooking200.html#dhg.data.Cooking200)**: A cooking recipe dataset for vertex classification task.
305
+
-**[BlogCatalog](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.BlogCatalog.html#dhg.data.BlogCatalog)**: A social network dataset for vertex classification task.
306
+
307
+
-**[Flickr](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Flickr.html#dhg.data.Flickr)**: A social network dataset for vertex classification task.
308
+
309
+
-**[Github](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Github.html#dhg.data.Github)**: A collaboration network dataset for vertex classification task.
310
+
311
+
-**[Facebook](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Facebook.html#dhg.data.Facebook)**: A social network dataset for vertex classification task.
273
312
274
313
-**[MovieLens1M](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.MovieLens1M.html#dhg.data.MovieLens1M)**: A movie dataset for user-item recommendation task.
275
314
@@ -279,6 +318,34 @@ Currently, we have added the following datasets:
279
318
280
319
-**[Gowalla](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Gowalla.html#dhg.data.Gowalla)**: A location's feedback dataset for user-item recommendation task.
281
320
321
+
-**[TecentBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.TencentBiGraph.html#dhg.data.TencentBiGraph)**: A social network dataset for vertex classification task.
322
+
323
+
-**[CoraBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CoraBiGraph.html#dhg.data.CoraBiGraph)**: A citation network dataset for vertex classification task.
324
+
325
+
-**[PubmedBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.PubmedBiGraph.html#dhg.data.PubmedBiGraph)**: A citation network dataset for vertex classification task.
326
+
327
+
-**[CiteseerBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CiteseerBiGraph.html#dhg.data.CiteseerBiGraph)**: A citation network dataset for vertex classification task.
328
+
329
+
-**[Cooking200](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Cooking200.html#dhg.data.Cooking200)**: A cooking recipe dataset for vertex classification task.
330
+
331
+
-**[CoauthorshipCora](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CoauthorshipCora.html#dhg.data.CoauthorshipCora)**: A citation network dataset for vertex classification task.
332
+
333
+
-**[CoauthorshipDBLP](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CoauthorshipDBLP.html#dhg.data.CoauthorshipDBLP)**: A citation network dataset for vertex classification task.
334
+
335
+
-**[CocitationCora](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CocitationCora.html#dhg.data.CocitationCora)**: A citation network dataset for vertex classification task.
336
+
337
+
-**[CocitationPubmed](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CocitationCiteseer.html#dhg.data.CocitationCiteseer)**: A citation network dataset for vertex classification task.
338
+
339
+
-**[CocitationCiteseer](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CocitationPubmed.html#dhg.data.CocitationPubmed)**: A citation network dataset for vertex classification task.
340
+
341
+
-**[YelpRestaurant](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.YelpRestaurant.html#dhg.data.YelpRestaurant)**: A restaurant-review network dataset for vertex classification task.
342
+
343
+
-**[WalmartTrips](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.WalmartTrips.html#dhg.data.WalmartTrips)**: A user-product network dataset for vertex classification task.
344
+
345
+
-**[HouseCommittees](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.HouseCommittees.html#dhg.data.HouseCommittees)**: A committee network dataset for vertex classification task.
346
+
347
+
-**[News20](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.News20.html#dhg.data.News20)**: A newspaper network dataset for vertex classification task.
348
+
282
349
## Metrics
283
350
284
351
### Classification Metrics
@@ -327,6 +394,10 @@ Currently, we have added the following datasets:
327
394
328
395
-**[LightGCN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.LightGCN.html#dhg.models.LightGCN)** model of [LightGCN: Lightweight Graph Convolutional Networks](https://arxiv.org/pdf/2002.02126) paper (SIGIR 2020).
329
396
397
+
-**[BGNN-Adv](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.BGNN_Adv.html#dhg.models.BGNN_Adv)** model of [Cascade-BGNN: Toward Efficient Self-supervised Representation Learning on Large-scale Bipartite Graphs](https://arxiv.org/pdf/1906.11994.pdf) paper (TNNLS 2020).
398
+
399
+
-**[BGNN-MLP](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.BGNN_MLP.html#dhg.models.BGNN_MLP)** model of [Cascade-BGNN: Toward Efficient Self-supervised Representation Learning on Large-scale Bipartite Graphs](https://arxiv.org/pdf/1906.11994.pdf) paper (TNNLS 2020).
400
+
330
401
331
402
### On High-Order Structures
332
403
@@ -336,9 +407,17 @@ Currently, we have added the following datasets:
336
407
337
408
-**[HyperGCN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.HyperGCN.html#dhg.models.HyperGCN)** model of [HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs](https://papers.nips.cc/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf) paper (NeurIPS 2019).
338
409
410
+
-**[DHCF](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.DHCF.html#dhg.models.DHCF)** model of [Dual Channel Hypergraph Collaborative Filtering](https://dl.acm.org/doi/10.1145/3394486.3403253) paper (KDD 2020).
411
+
339
412
-**[HNHN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.HNHN.html#dhg.models.HNHN)** model of [HNHN: Hypergraph Networks with Hyperedge Neurons](https://arxiv.org/pdf/2006.12278.pdf) paper (ICML 2020).
340
413
341
-
-**[DHCF](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.DHCF.html#dhg.models.DHCF)** model of [Dual Channel Hypergraph Collaborative Filtering](https://dl.acm.org/doi/10.1145/3394486.3403253) paper (KDD 2020).
414
+
-**[UniGCN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniGCN.html#dhg.models.UniGCN)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021).
415
+
416
+
-**[UniGAT](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniGAT.html#dhg.models.UniGAT)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021).
417
+
418
+
-**[UniSAGE](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniSAGE.html#dhg.models.UniSAGE)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021).
419
+
420
+
-**[UniGIN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniGIN.html#dhg.models.UniGIN)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021).
Copy file name to clipboardExpand all lines: docs/source/index.rst
+2-7Lines changed: 2 additions & 7 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -12,12 +12,6 @@ DHG Overview
12
12
\part{English}
13
13
\chapter{DHG Overview}
14
14
15
-
.. only:: not latex
16
-
17
-
.. attention::
18
-
19
-
We are rushing the documentation and tutorials, which will be updated twice a day!
20
-
21
15
22
16
**DHG** (*DeepHypergraph*) is a deep learning library built upon `PyTorch <https://pytorch.org/>`_ for learning with both Graph Neural Networks and Hypergraph Neural Networks.
23
17
It is a general framework that supports both low-order and high-order message passing like
@@ -35,7 +29,8 @@ can help you automatically tune the hyper-parameters of your models in training
35
29
36
30
**News**
37
31
38
-
- *2022-08-25* -> The **v0.9.1 release** is now available!
32
+
- 2022-09-25 -> The **v0.9.2** is now available! More datasets, SOTA models, and visualizations are included!
0 commit comments