Skip to content

Commit 6f62390

Browse files
committed
Merge branch 'main' of github.com:iMoonLab/DeepHypergraph into main
2 parents 9984a8a + 5a9fd3b commit 6f62390

File tree

5 files changed

+93
-24
lines changed

5 files changed

+93
-24
lines changed

README.md

Lines changed: 89 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -15,14 +15,12 @@
1515

1616
**[Website](https://deephypergraph.com/)** | **[Documentation](https://deephypergraph.readthedocs.io/)** | **[Tutorials](https://deephypergraph.readthedocs.io/en/latest/tutorial/overview.html)** | **[中文文档](https://deephypergraph.readthedocs.io/en/latest/zh/overview.html)** | **[Official Examples](https://deephypergraph.readthedocs.io/en/latest/examples/vertex_cls/index.html)** | **[Discussions](https://github.com/iMoonLab/DeepHypergraph/discussions)**
1717

18-
<p align="center">
19-
The v0.9.2 will be released soon, which will include many structure visualizations!<br>
20-
我们很快将发布v0.9.2版本,其中包含了各种关联结构的可视化!
21-
</p>
2218

2319
## News
24-
- 2022-08-25 -> DHG's first version v0.9.1 is now available!
25-
- 2022-08-25 -> DHG的第一个版本 v0.9.1 正式发布!
20+
- 2022-09-25 -> **v0.9.2** is now available! More datasets, SOTA models, and visualizations are included!
21+
- 2022-09-25 -> **v0.9.2** 正式发布! 包含更多数据集、最新模型和可视化功能!
22+
- 2022-08-25 -> DHG's first version **v0.9.1** is now available!
23+
- 2022-08-25 -> DHG的第一个版本 **v0.9.1** 正式发布!
2624

2725

2826
**DHG** *(DeepHypergraph)* is a deep learning library built upon [PyTorch](https://pytorch.org) for learning with both Graph Neural Networks and Hypergraph Neural Networks. It is a general framework that supports both low-order and high-order message passing like **from vertex to vertex**, **from vertex in one domain to vertex in another domain**, **from vertex to hyperedge**, **from hyperedge to vertex**, **from vertex set to vertex set**.
@@ -71,13 +69,13 @@ The Optuna library endows DHG with the Auto-ML ability. DHG supports automatical
7169
## Installation
7270

7371

74-
Current, the stable version of **DHG** is 0.9.1. You can install it with ``pip`` as follows:
72+
Current, the stable version of **DHG** is 0.9.2. You can install it with ``pip`` as follows:
7573

7674
```python
7775
pip install dhg
7876
```
7977

80-
You can also try the nightly version (0.9.2) of **DHG** library with ``pip`` as follows:
78+
You can also try the nightly version (0.9.3) of **DHG** library with ``pip`` as follows:
8179

8280
```python
8381
pip install git+https://github.com/iMoonLab/DeepHypergraph.git
@@ -88,6 +86,41 @@ If you find any bugs, please report it to us in [GitHub Issues](https://github.c
8886

8987
## Quick Start
9088

89+
### Visualization
90+
91+
You can draw the graph, hypergraph, directed graph, and bipartite graph with DHG's visualization tool. More details see the [Tutorial](https://deephypergraph.readthedocs.io/en/latest/tutorial/vis_structure.html)
92+
93+
94+
![Visualization of graph and hypergraph](docs/source/_static/img/readme_graph_hypergraph.png)
95+
96+
```python
97+
import matplotlib.pyplot as plt
98+
import dhg
99+
# draw a graph
100+
g = dhg.random.graph_Gnm(10, 12)
101+
g.draw()
102+
# draw a hypergraph
103+
hg = dhg.random.hypergraph_Gnm(10, 8)
104+
hg.draw()
105+
# show figures
106+
plt.show()
107+
```
108+
109+
![Visualization of directed graph and bipartite graph](docs/source/_static/img/readme_digraph_bigraph.png)
110+
111+
```python
112+
import matplotlib.pyplot as plt
113+
import dhg
114+
# draw a directed graph
115+
g = dhg.random.digraph_Gnm(12, 18)
116+
g.draw()
117+
# draw a bipartite graph
118+
g = dhg.random.bigraph_Gnm(30, 40, 20)
119+
g.draw()
120+
# show figures
121+
plt.show()
122+
```
123+
91124
### Learning on Low-Order Structures
92125

93126
On graph structures, you can smooth a given vertex features with GCN's Laplacian matrix by:
@@ -269,7 +302,13 @@ Currently, we have added the following datasets:
269302

270303
- **[Citeseer](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Citeseer.html#dhg.data.Citeseer)**: A citation network dataset for vertex classification task.
271304

272-
- **[Cooking200](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Cooking200.html#dhg.data.Cooking200)**: A cooking recipe dataset for vertex classification task.
305+
- **[BlogCatalog](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.BlogCatalog.html#dhg.data.BlogCatalog)**: A social network dataset for vertex classification task.
306+
307+
- **[Flickr](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Flickr.html#dhg.data.Flickr)**: A social network dataset for vertex classification task.
308+
309+
- **[Github](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Github.html#dhg.data.Github)**: A collaboration network dataset for vertex classification task.
310+
311+
- **[Facebook](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Facebook.html#dhg.data.Facebook)**: A social network dataset for vertex classification task.
273312

274313
- **[MovieLens1M](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.MovieLens1M.html#dhg.data.MovieLens1M)**: A movie dataset for user-item recommendation task.
275314

@@ -279,6 +318,34 @@ Currently, we have added the following datasets:
279318

280319
- **[Gowalla](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Gowalla.html#dhg.data.Gowalla)**: A location's feedback dataset for user-item recommendation task.
281320

321+
- **[TecentBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.TencentBiGraph.html#dhg.data.TencentBiGraph)**: A social network dataset for vertex classification task.
322+
323+
- **[CoraBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CoraBiGraph.html#dhg.data.CoraBiGraph)**: A citation network dataset for vertex classification task.
324+
325+
- **[PubmedBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.PubmedBiGraph.html#dhg.data.PubmedBiGraph)**: A citation network dataset for vertex classification task.
326+
327+
- **[CiteseerBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CiteseerBiGraph.html#dhg.data.CiteseerBiGraph)**: A citation network dataset for vertex classification task.
328+
329+
- **[Cooking200](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Cooking200.html#dhg.data.Cooking200)**: A cooking recipe dataset for vertex classification task.
330+
331+
- **[CoauthorshipCora](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CoauthorshipCora.html#dhg.data.CoauthorshipCora)**: A citation network dataset for vertex classification task.
332+
333+
- **[CoauthorshipDBLP](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CoauthorshipDBLP.html#dhg.data.CoauthorshipDBLP)**: A citation network dataset for vertex classification task.
334+
335+
- **[CocitationCora](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CocitationCora.html#dhg.data.CocitationCora)**: A citation network dataset for vertex classification task.
336+
337+
- **[CocitationPubmed](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CocitationCiteseer.html#dhg.data.CocitationCiteseer)**: A citation network dataset for vertex classification task.
338+
339+
- **[CocitationCiteseer](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CocitationPubmed.html#dhg.data.CocitationPubmed)**: A citation network dataset for vertex classification task.
340+
341+
- **[YelpRestaurant](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.YelpRestaurant.html#dhg.data.YelpRestaurant)**: A restaurant-review network dataset for vertex classification task.
342+
343+
- **[WalmartTrips](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.WalmartTrips.html#dhg.data.WalmartTrips)**: A user-product network dataset for vertex classification task.
344+
345+
- **[HouseCommittees](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.HouseCommittees.html#dhg.data.HouseCommittees)**: A committee network dataset for vertex classification task.
346+
347+
- **[News20](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.News20.html#dhg.data.News20)**: A newspaper network dataset for vertex classification task.
348+
282349
## Metrics
283350

284351
### Classification Metrics
@@ -327,6 +394,10 @@ Currently, we have added the following datasets:
327394

328395
- **[LightGCN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.LightGCN.html#dhg.models.LightGCN)** model of [LightGCN: Lightweight Graph Convolutional Networks](https://arxiv.org/pdf/2002.02126) paper (SIGIR 2020).
329396

397+
- **[BGNN-Adv](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.BGNN_Adv.html#dhg.models.BGNN_Adv)** model of [Cascade-BGNN: Toward Efficient Self-supervised Representation Learning on Large-scale Bipartite Graphs](https://arxiv.org/pdf/1906.11994.pdf) paper (TNNLS 2020).
398+
399+
- **[BGNN-MLP](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.BGNN_MLP.html#dhg.models.BGNN_MLP)** model of [Cascade-BGNN: Toward Efficient Self-supervised Representation Learning on Large-scale Bipartite Graphs](https://arxiv.org/pdf/1906.11994.pdf) paper (TNNLS 2020).
400+
330401

331402
### On High-Order Structures
332403

@@ -336,9 +407,17 @@ Currently, we have added the following datasets:
336407

337408
- **[HyperGCN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.HyperGCN.html#dhg.models.HyperGCN)** model of [HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs](https://papers.nips.cc/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf) paper (NeurIPS 2019).
338409

410+
- **[DHCF](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.DHCF.html#dhg.models.DHCF)** model of [Dual Channel Hypergraph Collaborative Filtering](https://dl.acm.org/doi/10.1145/3394486.3403253) paper (KDD 2020).
411+
339412
- **[HNHN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.HNHN.html#dhg.models.HNHN)** model of [HNHN: Hypergraph Networks with Hyperedge Neurons](https://arxiv.org/pdf/2006.12278.pdf) paper (ICML 2020).
340413

341-
- **[DHCF](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.DHCF.html#dhg.models.DHCF)** model of [Dual Channel Hypergraph Collaborative Filtering](https://dl.acm.org/doi/10.1145/3394486.3403253) paper (KDD 2020).
414+
- **[UniGCN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniGCN.html#dhg.models.UniGCN)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021).
415+
416+
- **[UniGAT](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniGAT.html#dhg.models.UniGAT)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021).
417+
418+
- **[UniSAGE](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniSAGE.html#dhg.models.UniSAGE)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021).
419+
420+
- **[UniGIN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniGIN.html#dhg.models.UniGIN)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021).
342421

343422

344423

256 KB
Loading
142 KB
Loading

docs/source/index.rst

Lines changed: 2 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -12,12 +12,6 @@ DHG Overview
1212
\part{English}
1313
\chapter{DHG Overview}
1414

15-
.. only:: not latex
16-
17-
.. attention::
18-
19-
We are rushing the documentation and tutorials, which will be updated twice a day!
20-
2115

2216
**DHG** (*DeepHypergraph*) is a deep learning library built upon `PyTorch <https://pytorch.org/>`_ for learning with both Graph Neural Networks and Hypergraph Neural Networks.
2317
It is a general framework that supports both low-order and high-order message passing like
@@ -35,7 +29,8 @@ can help you automatically tune the hyper-parameters of your models in training
3529

3630
**News**
3731

38-
- *2022-08-25* -> The **v0.9.1 release** is now available!
32+
- 2022-09-25 -> The **v0.9.2** is now available! More datasets, SOTA models, and visualizations are included!
33+
- 2022-08-25 -> The **v0.9.1** is now available!
3934

4035
**Citing**
4136

docs/source/zh/overview.rst

Lines changed: 2 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,6 @@
11
DHG简介
22
==============
33

4-
.. only:: not latex
5-
6-
.. attention::
7-
8-
我们正在加快文档和教程的更新,每天会在午饭和晚饭期间进行两次更新!
9-
104
**DHG** (*DeepHypergraph*) 是基于 `PyTorch <https://pytorch.org/>`_ 的深度学习包,
115
可用于图神经网络以及超图神经网络。
126
其支持 **从顶点到顶点**、**从一个域的顶点到另一个域的顶点**、 **从顶点到超边**,、**从超边到顶点**、**从顶点集到顶点集** 等低阶或高阶信息传递的通用框架。
@@ -21,7 +15,8 @@ DHG简介
2115

2216
**新闻**
2317

24-
- *2022-08-25* -> DHG的第一个版本 **v0.9.1** 正式发布!
18+
- 2022-09-25 -> **v0.9.2** 正式发布! 包含更多数据集、最新模型和可视化功能!
19+
- 2022-08-25 -> DHG的第一个版本 **v0.9.1** 正式发布!
2520

2621
**引用**
2722

0 commit comments

Comments
 (0)