You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
:math:`\mathbb{P}^{n,k} = \left\{\mathbf{x} \in\mathbb{R}^{n}: \| \mathbf{x}\|<1\right\}` is an open :math:`n`-demensionsional unit ball,
149
-
where :math:`\|. \|` denotes the Euclidean norm. Its metric tensor is :math:`g_{\mathbf{x}}^{\mathbb{P}} = \lambda_{\mathbf{x}}^{2} g^{E}`,
150
-
where :math:`\lambda_{\mathbf{x}} = \frac{2} {1- k\|\mathbf{x}\|^{2} }` is the conformal factor and :math:`g^{E}=\mathbf{I}_{n}` is the Euclidean metric tensor.
151
-
For two points :math:`\mathbf{x}, \mathbf{y} \in\mathbb{P}^{n,k}`, we ues the Möbius addition :math:`\oplus` operate adding
152
-
by connecting the gyrospace framework with Riemannian geometry:
The distance between two points :math:`\mathbf{x}, \mathbf{y} \in\mathbb{P}^{n,k}` is calculated by integration of the metric tensor, which is given as:
Denote point :math:`\mathbf{z} \in\mathcal{T}_{\mathrm{x}} \mathbb{P}^{n,k}` the tangent (Euclidean) space centered at any point :math:`\mathbf{x}` in the hyperbolic space.
166
-
For the tangent vector :math:`\mathbf{z} \neq\mathbf{0}` and the point :math:`\mathbf{y} \neq\mathbf{0}`,
167
-
the exponential map :math:`\exp _{\mathbf{x}}: \mathcal{T}_{\mathbf{x}} \mathbb{P}^{n,k} \rightarrow\mathbb{P}^{n,k}` and
168
-
the logarithmic map :math:`\log_{\mathbf{x}}: \mathbb{P}^{n,k} \rightarrow\mathcal{T}_{\mathbf{x}} \mathbb{P}^{n,k}` are given for
It is noted that our initial data are on Euclidean space and need to be converted to embeddings on hyperbolic space, so first project the data on the previously obtained Euclidean space onto the hyperbolic manifold space
182
-
in order to use the Spectral-based hypergraph hyperbolic convolutional network to learn the information to update the node embeddings.
183
-
Set :math:`t:=\{\sqrt{K}, 0, 0, \dots, 0\}\in\mathbb{P}^{d, K}` as a reference point to perform tangent space operations,
184
-
where:math:`-1/K` is the negative curvature of hyperbolic model.
185
-
The above premise makes :math:`\langle(0, \mathbf{x}^{0, E}), t\rangle=0` hold,
186
-
so:math:`(0, \mathbf{x}^{0, E})` can be regarded as the initial embedding representation of the hypergraph structure on the tangent plane
187
-
of the hyperbolic manifold space:math:`\mathcal{T}_t\mathbb{P}^{d, K}`. The initial hypergraph structure embedding is
188
-
then mapped onto the hyperbolic manifold space :math:`\mathbb{P}` using the following equation:
0 commit comments