Skip to content

Commit f11473f

Browse files
committed
update doc
1 parent dfad064 commit f11473f

File tree

2 files changed

+6
-5
lines changed

2 files changed

+6
-5
lines changed

docs/source/api/utils.rst

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -36,6 +36,10 @@ Structure Helpers
3636

3737
.. autofunction:: dhg.utils.adj_list_to_edge_list
3838

39+
Sparse Operations
40+
-------------------------
41+
42+
.. autofunction:: dhg.utils.sparse_dropout
3943

4044
Dataset Wrapers
4145
-----------------------

docs/source/tutorial/vis_feature.rst

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,6 @@ The distance between two points :math:`\mathbf{x}, \mathbf{y} \in \mathbb{P}^{n,
145145
.. math::
146146
147147
d_{\mathbb{P}}^{k} (\mathbf{x}, \mathbf{y}) = (2 / \sqrt{K}) \tanh ^{-1}\left(\sqrt{k}\left\|-x \oplus_{k} y\right\|\right) .
148-
% \operatorname{arcosh} \left(1+2 \frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{ \left(1- \|\mathbf{x}\|^{2} \right) \left(1- \|\mathbf{y}\|^{2} \right)} \right)
149148
150149
151150
Denote point :math:`\mathbf{z} \in \mathcal{T}_{\mathrm{x}} \mathbb{P}^{n,k}` the tangent (Euclidean) space centered at any point :math:`\mathbf{x}` in the hyperbolic space.
@@ -156,14 +155,12 @@ the logarithmic map :math:`\log_{\mathbf{x}}: \mathbb{P}^{n,k} \rightarrow \math
156155

157156
.. math::
158157
159-
% \exp_{\mathbf{x}} (\mathbf{v}) = \mathbf{x} \oplus \left( \tanh \left(\frac{\lambda_{\mathbf{x}} \|\mathbf{v}\|}{2} \right) \frac{\mathbf{v}} {\|\mathbf{v}\|} \right)
160-
\exp _{\mathbf{x}}^{k}(\mathbf{z})=\mathbf{x} \oplus_{k}\left(\tanh \left(\sqrt{k} \frac{\lambda_{\mathbf{x}}^{k}\|\mathbf{z}\|}{2}\right) \frac{\mathbf{z}}{\sqrt{k}\|\mathbf{z}\|}\right),
158+
\exp _{\mathbf{x}}^{k}(\mathbf{z})=\mathbf{x} \oplus_{k}\left(\tanh \left(\sqrt{k} \frac{\lambda_{\mathbf{x}}^{k}\|\mathbf{z}\|}{2}\right) \frac{\mathbf{z}}{\sqrt{k}\|\mathbf{z}\|}\right),
161159
162160
and
163161

164162
.. math::
165163
166-
% \log_{\mathbf{x}} (\mathbf{y}) = \frac{2} {\lambda_{\mathbf{x}}} \operatorname{arctanh}(\|-\mathbf{x} \oplus \mathbf{y}\|) \frac{-\mathbf{x} \oplus \mathbf{y}}{\|-\mathbf{x} \oplus \mathbf{y}\|}
167164
\log _{\mathbf{x}}^{k}(\mathbf{y})=\frac{2}{\sqrt{k} \lambda_{\mathbf{x}}^{k}} \tanh ^{-1}\left(\sqrt{k}\left\|-\mathbf{x} \oplus_{k} \mathbf{y}\right\|\right) \frac{-\mathbf{x} \oplus_{k} \mathbf{y}}{\left\|-\mathbf{x} \oplus_{k} \mathbf{y}\right\|} .
168165
169166
It is noted that our initial data are on Euclidean space and need to be converted to embeddings on hyperbolic space, so first project the data on the previously obtained Euclidean space onto the hyperbolic manifold space
@@ -177,7 +174,7 @@ then mapped onto the hyperbolic manifold space :math:`\mathbb{P}` using the foll
177174

178175
.. math::
179176
180-
&\mathbf{x}^{0, \mathbb{P}} =\exp _{t}^{K}\left(\left(0, \mathbf{x}^{0, \mathrm{E}}\right)\right) \\
177+
\mathbf{x}^{0, \mathbb{P}} &=\exp _{t}^{K}\left(\left(0, \mathbf{x}^{0, \mathrm{E}}\right)\right) \\
181178
&=\left(\sqrt{K} \cosh \left(\frac{\left\|\mathbf{x}^{0, \mathbb{E}}\right\|_{2}}{\sqrt{K}}\right),
182179
\sqrt{K} \sinh \left(\frac{\left\|\mathbf{x}^{0, \mathbb{E}}\right\|_{2}}{\sqrt{K}}\right) \frac{\mathbf{x}^{0, \mathbb{E}}}{\left\|\mathbf{x}^{0, \mathbb{E}}\right\|_{2}}\right).
183180

0 commit comments

Comments
 (0)