|
| 1 | +from pathlib import Path |
| 2 | +from urllib.request import urlretrieve |
| 3 | +from zipfile import ZipFile |
| 4 | + |
| 5 | +import ibis |
| 6 | + |
| 7 | +# Download and unzip the 2018 individual contributions data |
| 8 | +url = ( |
| 9 | + "https://cg-519a459a-0ea3-42c2-b7bc-fa1143481f74.s3-us-gov-west-1." |
| 10 | + "amazonaws.com/bulk-downloads/2018/indiv18.zip" |
| 11 | +) |
| 12 | + |
| 13 | +root_dir = Path(__file__).resolve().parent.parent |
| 14 | +data_dir = root_dir.joinpath("data") |
| 15 | +data_dir.mkdir(exist_ok=True) |
| 16 | + |
| 17 | +zip_path = data_dir.joinpath("indiv18.zip") |
| 18 | +csv_path = data_dir.joinpath("itcont.txt") |
| 19 | +parquet_path = data_dir.joinpath("itcont.parquet") |
| 20 | + |
| 21 | +if not zip_path.exists(): |
| 22 | + print("Downloading indiv18.zip...") |
| 23 | + urlretrieve(url, zip_path) |
| 24 | +else: |
| 25 | + print("indiv18.zip already downloaded") |
| 26 | + |
| 27 | +if not csv_path.exists(): |
| 28 | + print("Extracting itcont.txt...") |
| 29 | + with ZipFile(zip_path) as zip_file: |
| 30 | + zip_file.extract("itcont.txt", path=data_dir) |
| 31 | +else: |
| 32 | + print("itcont.txt already extracted") |
| 33 | + |
| 34 | +if not parquet_path.exists(): |
| 35 | + print("Generating itcont.parquet...") |
| 36 | + # Read in the CSV |
| 37 | + t = ibis.read_csv(csv_path) |
| 38 | + |
| 39 | + # The CSV doesn't have a header, we need to manually add titles |
| 40 | + header = [ |
| 41 | + "CMTE_ID", |
| 42 | + "AMNDT_IND", |
| 43 | + "RPT_TP", |
| 44 | + "TRANSACTION_PGI", |
| 45 | + "IMAGE_NUM", |
| 46 | + "TRANSACTION_TP", |
| 47 | + "ENTITY_TP", |
| 48 | + "NAME", |
| 49 | + "CITY", |
| 50 | + "STATE", |
| 51 | + "ZIP_CODE", |
| 52 | + "EMPLOYER", |
| 53 | + "OCCUPATION", |
| 54 | + "TRANSACTION_DT", |
| 55 | + "TRANSACTION_AMT", |
| 56 | + "OTHER_ID", |
| 57 | + "TRAN_ID", |
| 58 | + "FILE_NUM", |
| 59 | + "MEMO_CD", |
| 60 | + "MEMO_TEXT", |
| 61 | + "SUB_ID", |
| 62 | + ] |
| 63 | + t = t.relabel(dict(zip(t.columns, header))) |
| 64 | + |
| 65 | + # For the analysis, we're only going to use a few of the columns. To save |
| 66 | + # bandwidth, lets select out only the columns we'll be using. |
| 67 | + columns = [ |
| 68 | + "CMTE_ID", |
| 69 | + "TRANSACTION_PGI", |
| 70 | + "ENTITY_TP", |
| 71 | + "CITY", |
| 72 | + "STATE", |
| 73 | + "TRANSACTION_DT", |
| 74 | + "TRANSACTION_AMT", |
| 75 | + ] |
| 76 | + t = t[columns] |
| 77 | + |
| 78 | + # Write out a parquet file |
| 79 | + t.to_parquet(parquet_path, compression="zstd") |
| 80 | +else: |
| 81 | + print("itcont.parquet already exists") |
0 commit comments