@@ -131737,8 +131737,8 @@ nonnegative integers (cont.)". $)
131737
131737
$( Membership of the least member in an upper set of integers. (Contributed
131738
131738
by NM, 2-Sep-2005.) $)
131739
131739
uzid $p |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) $=
131740
- ( cz wcel cuz cfv cle wbr wa zre leidd ancli eluz1 mpbird ) ABCZAADECNAAFGZ
131741
- HNONAAIJKAALM $.
131740
+ ( cz wcel cuz cfv cle wbr id zre leidd eluz1 mpbir2and ) ABCZAADECMAAFGMHMA
131741
+ AIJAAKL $.
131742
131742
131743
131743
${
131744
131744
uzidd.1 $e |- ( ph -> M e. ZZ ) $.
@@ -523485,9 +523485,9 @@ Real and complex numbers (cont.)
523485
523485
Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) $)
523486
523486
gcd32 $p |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ->
523487
523487
( ( A gcd B ) gcd C ) = ( ( A gcd C ) gcd B ) ) $=
523488
- ( cz wcel w3a cgcd co wceq wa gcdcom oveq2d 3adant1 gcdass 3com23 3eqtr4d )
523489
- ADEZBDEZCDEZFABCGHZGHZACBGHZGHZABGHCGHACGHBGHZRSUAUCIQRSJTUBAGBCKLMCBANQSRU
523490
- DUCIBCANOP $.
523488
+ ( cz wcel w3a cgcd co wceq gcdcom 3adant1 oveq2d gcdass 3com23 3eqtr4d ) AD
523489
+ EZBDEZCDEZFZABCGHZGHACBGHZGHZABGHCGHACGHBGHZSTUAAGQRTUAIPBCJKLCBAMPRQUCUBIB
523490
+ CAMNO $.
523491
523491
523492
523492
$( Absorption law for gcd. (Contributed by Scott Fenton, 8-Apr-2014.)
523493
523493
(Revised by Mario Carneiro, 19-Apr-2014.) $)
@@ -647581,7 +647581,7 @@ standardize vectors to a length (norm) of one, but such definitions require
647581
647581
647582
647582
prjspnenm1.f $e |- F = ??? $.
647583
647583
prjspnenm1.g $e |- G = ??? $.
647584
- @( The canonical bijection between an n-dimensional projective K-space and
647584
+ @( The canonical bijection from an n-dimensional projective K-space onto
647585
647585
the disjoint union of the n-dimensional affine K-space and the
647586
647586
(n-1)-dimensional projective space (its "hypersurface at infinity").
647587
647587
(Contributed by SN, ??-???-202?.) @)
@@ -647843,59 +647843,78 @@ standardize vectors to a length (norm) of one, but such definitions require
647843
647843
$}
647844
647844
647845
647845
${
647846
- fltdvdsabdvdsc.s $e |- ( ph -> S e. NN ) $.
647847
647846
fltdvdsabdvdsc.a $e |- ( ph -> A e. NN ) $.
647848
647847
fltdvdsabdvdsc.b $e |- ( ph -> B e. NN ) $.
647849
647848
fltdvdsabdvdsc.c $e |- ( ph -> C e. NN ) $.
647850
647849
fltdvdsabdvdsc.n $e |- ( ph -> N e. NN ) $.
647851
647850
fltdvdsabdvdsc.1 $e |- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) $.
647852
647851
$( Any factor of both ` A ` and ` B ` also divides ` C ` . This
647853
- establishes the validity of ~ fltabcoprm . (Contributed by SN,
647852
+ establishes the validity of ~ fltabcoprmex . (Contributed by SN,
647854
647853
21-Aug-2024.) $)
647855
647854
fltdvdsabdvdsc $p |- ( ph -> ( A gcd B ) || C ) $=
647856
- ( co cdvds wbr cexp cn wcel nnexpcld nnzd caddc gcdnncl syl2anc nnnn0d cz
647855
+ ( co cdvds wbr cexp cn wcel syl2anc nnexpcld nnzd cz caddc gcdnncl nnnn0d
647857
647856
wa gcddvds simpld dvdsexpad simprd dvds2addd breqtrd wb dvdsexpnn syl3anc
647858
- cgcd mpbird ) ABCUPMZDNOZURFPMZDFPMZNOZAUTBFPMZCFPMZUAMVANAUTVCVDAUTAURFA
647859
- BQRCQRURQRZHIBCUBUCZAFKUDZSTAURBFAURVFTZABHTZVGAURBNOZURCNOZABUERCUERVJVK
647860
- UFVIACITZBCUGUCZUHUIAURCFVHVLVGAVJVKVMUJUIAVCABFHVGSTAVDACFIVGSTUKLULAVED
647861
- QRFQRUSVBUMVFJKURDFUNUOUQ $.
647857
+ cgcd mpbird ) ABCUNKZDLMZUPENKZDENKZLMZAURBENKZCENKZUAKUSLAURVAVBAURAUPEA
647858
+ BOPCOPUPOPZFGBCUBQZAEIUCZRSAUPBEAUPVDSZABFSZVEAUPBLMZUPCLMZABTPCTPVHVIUDV
647859
+ GACGSZBCUEQZUFUGAUPCEVFVJVEAVHVIVKUHUGAVAABEFVERSAVBACEGVERSUIJUJAVCDOPEO
647860
+ PUQUTUKVDHIUPDEULUMUO $.
647862
647861
$}
647863
647862
647864
647863
${
647865
- fltabcoprm.s $e |- ( ph -> S e. NN ) $.
647866
- fltabcoprm.a $e |- ( ph -> A e. NN ) $.
647867
- fltabcoprm.b $e |- ( ph -> B e. NN ) $.
647868
- fltabcoprm.c $e |- ( ph -> C e. NN ) $.
647869
- fltabcoprm.n $e |- ( ph -> N e. NN0 ) $.
647870
- fltabcoprm.1 $e |- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) $.
647864
+ fltabcoprmex.a $e |- ( ph -> A e. NN ) $.
647865
+ fltabcoprmex.b $e |- ( ph -> B e. NN ) $.
647866
+ fltabcoprmex.c $e |- ( ph -> C e. NN ) $.
647867
+ fltabcoprmex.n $e |- ( ph -> N e. NN0 ) $.
647868
+ fltabcoprmex.1 $e |- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) $.
647871
647869
$( A counterexample to FLT implies a counterexample to FLT with ` A , B `
647872
647870
(assigned to ` A / ( A gcd B ) ` and ` B / ( A gcd B ) ` ) coprime (by
647873
647871
~ divgcdcoprm0 ). (Contributed by SN, 20-Aug-2024.) $)
647874
- fltabcoprm $p |- ( ph -> ( ( ( A / ( A gcd B ) ) ^ N )
647872
+ fltabcoprmex $p |- ( ph -> ( ( ( A / ( A gcd B ) ) ^ N )
647875
647873
+ ( ( B / ( A gcd B ) ) ^ N ) )
647876
647874
= ( ( C / ( A gcd B ) ) ^ N ) ) $=
647877
- ( cgcd co cn wcel gcdnncl syl2anc nncnd nnne0d fltdiv ) ABCDBCMNZFAUBABOP
647878
- COPUBOPHIBCQRZSAUBUCTABHSACISADJSKLUA $.
647875
+ ( cgcd co cn wcel gcdnncl syl2anc nncnd nnne0d fltdiv ) ABCDBCKLZEATABMNC
647876
+ MNTMNFGBCOPZQATUARABFQACGQADHQIJS $.
647879
647877
647880
647878
$d A i $. $d B i $. $d C i $. $d ph i $.
647881
647879
fltaccoprm.1 $e |- ( ph -> ( A gcd B ) = 1 ) $.
647882
647880
$( A counterexample to FLT with ` A , B ` coprime also has ` A , C `
647883
647881
coprime (and by commutativity, ` B , C ` ). (Contributed by SN,
647884
647882
20-Aug-2024.) $)
647885
647883
fltaccoprm $p |- ( ph -> ( A gcd C ) = 1 ) $=
647886
- ( vi cdvds wbr cn co wcel cz cv wa c1 wceq wi wral cgcd coprmgcdb syl2anc
647887
- wb mpbird simprl cexp cmin simpr adantr dvdsexpim syl3anc anim12d ancomsd
647888
- cn0 nnzd imp nnexpcld ad2antrr dvds2sub mpd nncnd expcld laddrotrd simplr
647889
- breqtrd flt0 dvdsexpnn jca ex imim1d ralimdva mpbid ) ANUAZBOPZVTDOPZUBZV
647890
- TUCUDZUEZNQUFZBDUGRUCUDZAWAVTCOPZUBZWDUEZNQUFZWFAWKBCUGRUCUDZMABQSZCQSZWK
647891
- WLUJHIBCNUHUIUKAWJWENQAVTQSZUBZWCWIWDWPWCWIWPWCUBZWAWHWPWAWBULWQWHVTFUMRZ
647892
- CFUMRZOPZWQWRDFUMRZBFUMRZUNRZWSOWQWRXAOPZWRXBOPZUBZWRXCOPZWPWCXFWPWBWAXFW
647893
- PWBXDWAXEWPVTTSZDTSZFVASZWBXDUEWPVTAWOUOZVBZAXIWOADJVBUPAXJWOKUPZVTDFUQUR
647894
- WPXHBTSZXJWAXEUEXLAXNWOABHVBUPXMVTBFUQURUSUTVCWQWRTSZXATSZXBTSZXFXGUEWPXO
647895
- WCWPWRWPVTFXKXMVDVBUPAXPWOWCAXAADFJKVDVBVEAXQWOWCAXBABFHKVDVBVEWRXAXBVFUR
647896
- VGAXCWSUDWOWCAXBWSXAABFABHVHZKVIACFACIVHZKVILVJVEVLWQWOWNFQSZWHWTUJAWOWCV
647897
- KAWNWOWCIVEAXTWOWCABCDFXRXSADJVHKLVMVEVTCFVNURUKVOVPVQVRVGAWMDQSWFWGUJHJB
647898
- DNUHUIVS $.
647884
+ ( vi cdvds wbr wa cn co wcel cz nnzd cv c1 wceq wi wral cgcd wb coprmgcdb
647885
+ syl2anc mpbird simprl cexp simpr adantr dvdsexpim syl3anc anim12d ancomsd
647886
+ cmin cn0 imp nnexpcld ad2antrr dvds2sub mpd nncnd expcld laddrotrd simplr
647887
+ breqtrd flt0 dvdsexpnn jca ex imim1d ralimdva mpbid ) ALUAZBMNZVRDMNZOZVR
647888
+ UBUCZUDZLPUEZBDUFQUBUCZAVSVRCMNZOZWBUDZLPUEZWDAWIBCUFQUBUCZKABPRZCPRZWIWJ
647889
+ UGFGBCLUHUIUJAWHWCLPAVRPRZOZWAWGWBWNWAWGWNWAOZVSWFWNVSVTUKWOWFVREULQZCEUL
647890
+ QZMNZWOWPDEULQZBEULQZUSQZWQMWOWPWSMNZWPWTMNZOZWPXAMNZWNWAXDWNVTVSXDWNVTXB
647891
+ VSXCWNVRSRZDSRZEUTRZVTXBUDWNVRAWMUMZTZAXGWMADHTUNAXHWMIUNZVRDEUOUPWNXFBSR
647892
+ ZXHVSXCUDXJAXLWMABFTUNXKVRBEUOUPUQURVAWOWPSRZWSSRZWTSRZXDXEUDWNXMWAWNWPWN
647893
+ VREXIXKVBTUNAXNWMWAAWSADEHIVBTVCAXOWMWAAWTABEFIVBTVCWPWSWTVDUPVEAXAWQUCWM
647894
+ WAAWTWQWSABEABFVFZIVGACEACGVFZIVGJVHVCVJWOWMWLEPRZWFWRUGAWMWAVIAWLWMWAGVC
647895
+ AXRWMWAABCDEXPXQADHVFIJVKVCVRCEVLUPUJVMVNVOVPVEAWKDPRWDWEUGFHBDLUHUIVQ $.
647896
+ $}
647897
+
647898
+ ${
647899
+ $d A i $. $d B i $. $d C i $. $d ph i $.
647900
+ fltabcoprm.a $e |- ( ph -> A e. NN ) $.
647901
+ fltabcoprm.b $e |- ( ph -> B e. NN ) $.
647902
+ fltabcoprm.c $e |- ( ph -> C e. NN ) $.
647903
+ fltabcoprm.2 $e |- ( ph -> ( A gcd C ) = 1 ) $.
647904
+ fltabcoprm.3 $e |- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) $.
647905
+ $( A counterexample to FLT with ` A , C ` coprime also has ` A , B `
647906
+ coprime. Converse of ~ fltaccoprm . (Contributed by SN,
647907
+ 22-Aug-2024.) $)
647908
+ fltabcoprm $p |- ( ph -> ( A gcd B ) = 1 ) $=
647909
+ ( vi cdvds wbr wa wceq cn co wcel wb syl2anc c2 cv c1 wral cgcd coprmgcdb
647910
+ wi mpbird simprl cexp caddc simplr nnsqcld nnzd ad2antrr dvdssqlem simprr
647911
+ mpbid dvds2addd breqtrd jca ex imim1d ralimdva mpd ) AJUAZBKLZVECKLZMZVEU
647912
+ BNZUFZJOUCZBCUDPUBNZAVFVEDKLZMZVIUFZJOUCZVKAVPBDUDPUBNZHABOQZDOQZVPVQREGB
647913
+ DJUESUGAVOVJJOAVEOQZMZVHVNVIWAVHVNWAVHMZVFVMWAVFVGUHZWBVMVETUIPZDTUIPZKLZ
647914
+ WBWDBTUIPZCTUIPZUJPZWEKWBWDWGWHWBWDWBVEAVTVHUKZULUMWBVFWDWGKLZWCWBVTVRVFW
647915
+ KRWJAVRVTVHEUNZVEBUOSUQWBVGWDWHKLZWAVFVGUPWBVTCOQZVGWMRWJAWNVTVHFUNZVECUO
647916
+ SUQWBWGWBBWLULUMWBWHWBCWOULUMURAWIWENVTVHIUNUSWBVTVSVMWFRWJAVSVTVHGUNVEDU
647917
+ OSUGUTVAVBVCVDAVRWNVKVLREFBCJUESUQ $.
647899
647918
$}
647900
647919
647901
647920
${
@@ -647955,7 +647974,6 @@ standardize vectors to a length (norm) of one, but such definitions require
647955
647974
$}
647956
647975
647957
647976
${
647958
- $d A i $. $d B i $. $d C i $. $d ph i $.
647959
647977
flt4lem1.a $e |- ( ph -> A e. NN ) $.
647960
647978
flt4lem1.b $e |- ( ph -> B e. NN ) $.
647961
647979
flt4lem1.c $e |- ( ph -> C e. NN ) $.
@@ -647968,20 +647986,69 @@ standardize vectors to a length (norm) of one, but such definitions require
647968
647986
flt4lem1 $p |- ( ph -> ( ( A e. NN /\ B e. NN /\ C e. NN ) /\
647969
647987
( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\
647970
647988
( ( A gcd B ) = 1 /\ -. 2 || A ) ) ) $=
647971
- ( vi cn wcel c2 co cdvds wbr wa wb syl2anc w3a cexp caddc wceq cgcd c1 wn
647972
- 3jca cv wi wral coprmgcdb mpbird simprl simplr nnsqcld ad2antrr dvdssqlem
647973
- nnzd mpbid simprr dvds2addd breqtrd jca ex imim1d ralimdva mpd ) ABLMZCLM
647974
- ZDLMZUABNUBOZCNUBOZUCOZDNUBOZUDZBCUEOUFUDZNBPQUGZRAVIVJVKEFGUHJAVQVRAKUIZ
647975
- BPQZVSCPQZRZVSUFUDZUJZKLUKZVQAVTVSDPQZRZWCUJZKLUKZWEAWIBDUEOUFUDZIAVIVKWI
647976
- WJSEGBDKULTUMAWHWDKLAVSLMZRZWBWGWCWLWBWGWLWBRZVTWFWLVTWAUNZWMWFVSNUBOZVOP
647977
- QZWMWOVNVOPWMWOVLVMWMWOWMVSAWKWBUOZUPUSWMVTWOVLPQZWNWMWKVIVTWRSWQAVIWKWBE
647978
- UQZVSBURTUTWMWAWOVMPQZWLVTWAVAWMWKVJWAWTSWQAVJWKWBFUQZVSCURTUTWMVLWMBWSUP
647979
- USWMVMWMCXAUPUSVBAVPWKWBJUQVCWMWKVKWFWPSWQAVKWKWBGUQVSDURTUMVDVEVFVGVHAVI
647980
- VJWEVQSEFBCKULTUTHVDUH $.
647989
+ ( cn wcel w3a c2 cexp co caddc wceq cgcd 3jca c1 cdvds wbr fltabcoprm jca
647990
+ wn wa ) ABKLZCKLZDKLZMBNOPCNOPQPDNOPRBCSPUARZNBUBUCUFZUGAUHUIUJEFGTJAUKUL
647991
+ ABCDEFGIJUDHUET $.
647981
647992
$}
647982
647993
647983
647994
${
647984
647995
$d A i $. $d B i $. $d C i $. $d ph i $.
647996
+ flt4lem2.a $e |- ( ph -> A e. NN ) $.
647997
+ flt4lem2.b $e |- ( ph -> B e. NN ) $.
647998
+ flt4lem2.c $e |- ( ph -> C e. NN ) $.
647999
+ flt4lem2.1 $e |- ( ph -> 2 || A ) $.
648000
+ flt4lem2.2 $e |- ( ph -> ( A gcd C ) = 1 ) $.
648001
+ flt4lem2.3 $e |- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) $.
648002
+ $( If ` A ` is even, ` B ` is odd. (Contributed by SN, 22-Aug-2024.) $)
648003
+ flt4lem2 $p |- ( ph -> -. 2 || B ) $=
648004
+ ( vi c2 cdvds wbr wa wcel cz adantr cn nnzd cgcd co c1 wceq wn wne cv cuz
648005
+ cfv wrex breq1 anbi12d 2z uzid ax-mp a1i simpr dvdsgcd syl3anc mp2and 2nn
648006
+ wi fltdvdsabdvdsc gcdnncl syl2anc dvdstr rspcedvdw wb ncoprmgcdne1b mpbid
648007
+ jca ex necon2bd mpd ) ABDUAUBZUCUDLCMNZUEIAVPVOUCAVPVOUCUFZAVPOZKUGZBMNZV
648008
+ SDMNZOZKLUHUIZUJZVQVRWBLBMNZLDMNZOKLWCVSLUDVTWEWAWFVSLBMUKVSLDMUKULLWCPZV
648009
+ RLQPZWGUMLUNUOUPVRWEWFAWEVPHRZVRLBCUAUBZMNZWJDMNZWFVRWEVPWKWIAVPUQVRWHBQP
648010
+ CQPZWEVPOWKVBWHVRUMUPZVRBABSPZVPERZTAWMVPACFTRLBCURUSUTAWLVPABCDLEFGLSPAV
648011
+ AUPJVCRVRWHWJQPZDQPWKWLOWFVBWNAWQVPAWJAWOCSPWJSPEFBCVDVETRVRDADSPZVPGRZTL
648012
+ WJDVFUSUTVKVGVRWOWRWDVQVHWPWSBDKVIVEVJVLVMVN $.
648013
+ $}
648014
+
648015
+ ${
648016
+ flt4lem3.a $e |- ( ph -> A e. NN ) $.
648017
+ flt4lem3.b $e |- ( ph -> B e. NN ) $.
648018
+ flt4lem3.c $e |- ( ph -> C e. NN ) $.
648019
+ flt4lem3.1 $e |- ( ph -> 2 || A ) $.
648020
+ flt4lem3.2 $e |- ( ph -> ( A gcd C ) = 1 ) $.
648021
+ flt4lem3.3 $e |- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) $.
648022
+ $( Equivalent to ~ pythagtriplem4 . Show that ` C + A ` and ` C - A ` are
648023
+ coprime. (Contributed by SN, 22-Aug-2024.) $)
648024
+ flt4lem3 $p |- ( ph -> ( ( C + A ) gcd ( C - A ) ) = 1 ) $=
648025
+ ( caddc co cgcd c1 cz wcel wceq cn c2 cexp zaddcld zsubcld gcdcom syl2anc
648026
+ cmin nnzd w3a cdvds wbr wn wa flt4lem2 flt4lem1 pythagtriplem4 syl eqtrd
648027
+ ) ADBKLZDBUELZMLZURUQMLZNAUQOPUROPUSUTQADBADGUFZABEUFZUAADBVAVBUBUQURUCUD
648028
+ ACRPBRPDRPUGCSTLBSTLKLDSTLQCBMLNQSCUHUIUJUKUGUTNQACBDFEGABCDEFGHIJUL??UMC
648029
+ BDUNUOUP $.
648030
+ $}
648031
+
648032
+ ${
648033
+ $d ph s $. $d ph t $.
648034
+ flt4lem4.a $e |- ( ph -> A e. NN ) $.
648035
+ flt4lem4.b $e |- ( ph -> B e. NN ) $.
648036
+ flt4lem4.c $e |- ( ph -> C e. NN ) $.
648037
+ flt4lem4.1 $e |- ( ph -> ( A gcd B ) = 1 ) $.
648038
+ flt4lem4.2 $e |- ( ph -> ( A x. B ) = ( C ^ 2 ) ) $.
648039
+ $( If the product of two coprime factors is a perfect square, the factors
648040
+ are perfect squares. (Contributed by SN, 22-Aug-2024.) $)
648041
+ flt4lem4 $p |-
648042
+ ( ph -> ( A = ( ( A gcd C ) ^ 2 ) /\ B = ( ( B gcd C ) ^ 2 ) ) ) $=
648043
+ ( cgcd co c2 cexp wceq cn0 wcel cz c1 wi nnnn0d eqcomd nn0zd oveq1d eqtrd
648044
+ cmul 1gcd syl coprimeprodsq syl31anc mpd nnzd coprimeprodsq2 jca ) ABBDJK
648045
+ LMKNZCCDJKLMKNZADLMKZBCUEKZNZUNAUQUPIUAZABOPCQPDOPZBCJKZDJKZRNZURUNSABETA
648046
+ CACFTZUBADGTZAVBRDJKZRAVARDJHUCADQPVFRNADVEUBDUFUGUDZBCDUHUIUJAURUOUSABQP
648047
+ COPUTVCURUOSABEUKVDVEVGBCDULUIUJUM $.
648048
+ $}
648049
+
648050
+
648051
+ ${
647985
648052
flt4lem6a.a $e |- ( ph -> A e. NN ) $.
647986
648053
flt4lem6a.b $e |- ( ph -> B e. NN ) $.
647987
648054
flt4lem6a.c $e |- ( ph -> C e. NN ) $.
@@ -648038,7 +648105,7 @@ standardize vectors to a length (norm) of one, but such definitions require
648038
648105
$( Construct a smaller counterexample when ` A ` is even. (Contributed by
648039
648106
SN, 21-Aug-2024.) $)
648040
648107
flt4lem6b $p |- ( ph -> ? ) $=
648041
- ? $.
648108
+ ( ) ? $.
648042
648109
$}
648043
648110
648044
648111
${
@@ -648052,8 +648119,8 @@ standardize vectors to a length (norm) of one, but such definitions require
648052
648119
by SN, 20-Aug-2024.) $)
648053
648120
flt4lem6 $p |- ( ph -> E. z e. NN ( E. d e. NN E. e e. NN (
648054
648121
( d gcd z ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 2 ) ) = ( z ^ 4 ) ) /\
648055
- z < C ) $=
648056
- ? $.
648122
+ z < C ) ) $=
648123
+ ( ) ? $.
648057
648124
$}
648058
648125
648059
648126
${
0 commit comments