Skip to content

Commit 931ab43

Browse files
author
icecream17
authored
suggestion, fix hypotheses [skip ci]
two trivial shortenings --- I started working towards proving case B: https://en.wikipedia.org/wiki/Proof_of_Fermat%27s_Last_Theorem_for_specific_exponents#Proof_for_case_B However, it's at least three times as long as case A. So I'm stopping and committing a few fixes before switching to https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html
1 parent e0a23d5 commit 931ab43

File tree

1 file changed

+116
-49
lines changed

1 file changed

+116
-49
lines changed

set.mm

Lines changed: 116 additions & 49 deletions
Original file line numberDiff line numberDiff line change
@@ -131737,8 +131737,8 @@ nonnegative integers (cont.)". $)
131737131737
$( Membership of the least member in an upper set of integers. (Contributed
131738131738
by NM, 2-Sep-2005.) $)
131739131739
uzid $p |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) $=
131740-
( cz wcel cuz cfv cle wbr wa zre leidd ancli eluz1 mpbird ) ABCZAADECNAAFGZ
131741-
HNONAAIJKAALM $.
131740+
( cz wcel cuz cfv cle wbr id zre leidd eluz1 mpbir2and ) ABCZAADECMAAFGMHMA
131741+
AIJAAKL $.
131742131742

131743131743
${
131744131744
uzidd.1 $e |- ( ph -> M e. ZZ ) $.
@@ -523485,9 +523485,9 @@ Real and complex numbers (cont.)
523485523485
Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) $)
523486523486
gcd32 $p |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ->
523487523487
( ( A gcd B ) gcd C ) = ( ( A gcd C ) gcd B ) ) $=
523488-
( cz wcel w3a cgcd co wceq wa gcdcom oveq2d 3adant1 gcdass 3com23 3eqtr4d )
523489-
ADEZBDEZCDEZFABCGHZGHZACBGHZGHZABGHCGHACGHBGHZRSUAUCIQRSJTUBAGBCKLMCBANQSRU
523490-
DUCIBCANOP $.
523488+
( cz wcel w3a cgcd co wceq gcdcom 3adant1 oveq2d gcdass 3com23 3eqtr4d ) AD
523489+
EZBDEZCDEZFZABCGHZGHACBGHZGHZABGHCGHACGHBGHZSTUAAGQRTUAIPBCJKLCBAMPRQUCUBIB
523490+
CAMNO $.
523491523491

523492523492
$( Absorption law for gcd. (Contributed by Scott Fenton, 8-Apr-2014.)
523493523493
(Revised by Mario Carneiro, 19-Apr-2014.) $)
@@ -647581,7 +647581,7 @@ standardize vectors to a length (norm) of one, but such definitions require
647581647581

647582647582
prjspnenm1.f $e |- F = ??? $.
647583647583
prjspnenm1.g $e |- G = ??? $.
647584-
@( The canonical bijection between an n-dimensional projective K-space and
647584+
@( The canonical bijection from an n-dimensional projective K-space onto
647585647585
the disjoint union of the n-dimensional affine K-space and the
647586647586
(n-1)-dimensional projective space (its "hypersurface at infinity").
647587647587
(Contributed by SN, ??-???-202?.) @)
@@ -647843,59 +647843,78 @@ standardize vectors to a length (norm) of one, but such definitions require
647843647843
$}
647844647844

647845647845
${
647846-
fltdvdsabdvdsc.s $e |- ( ph -> S e. NN ) $.
647847647846
fltdvdsabdvdsc.a $e |- ( ph -> A e. NN ) $.
647848647847
fltdvdsabdvdsc.b $e |- ( ph -> B e. NN ) $.
647849647848
fltdvdsabdvdsc.c $e |- ( ph -> C e. NN ) $.
647850647849
fltdvdsabdvdsc.n $e |- ( ph -> N e. NN ) $.
647851647850
fltdvdsabdvdsc.1 $e |- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) $.
647852647851
$( Any factor of both ` A ` and ` B ` also divides ` C ` . This
647853-
establishes the validity of ~ fltabcoprm . (Contributed by SN,
647852+
establishes the validity of ~ fltabcoprmex . (Contributed by SN,
647854647853
21-Aug-2024.) $)
647855647854
fltdvdsabdvdsc $p |- ( ph -> ( A gcd B ) || C ) $=
647856-
( co cdvds wbr cexp cn wcel nnexpcld nnzd caddc gcdnncl syl2anc nnnn0d cz
647855+
( co cdvds wbr cexp cn wcel syl2anc nnexpcld nnzd cz caddc gcdnncl nnnn0d
647857647856
wa gcddvds simpld dvdsexpad simprd dvds2addd breqtrd wb dvdsexpnn syl3anc
647858-
cgcd mpbird ) ABCUPMZDNOZURFPMZDFPMZNOZAUTBFPMZCFPMZUAMVANAUTVCVDAUTAURFA
647859-
BQRCQRURQRZHIBCUBUCZAFKUDZSTAURBFAURVFTZABHTZVGAURBNOZURCNOZABUERCUERVJVK
647860-
UFVIACITZBCUGUCZUHUIAURCFVHVLVGAVJVKVMUJUIAVCABFHVGSTAVDACFIVGSTUKLULAVED
647861-
QRFQRUSVBUMVFJKURDFUNUOUQ $.
647857+
cgcd mpbird ) ABCUNKZDLMZUPENKZDENKZLMZAURBENKZCENKZUAKUSLAURVAVBAURAUPEA
647858+
BOPCOPUPOPZFGBCUBQZAEIUCZRSAUPBEAUPVDSZABFSZVEAUPBLMZUPCLMZABTPCTPVHVIUDV
647859+
GACGSZBCUEQZUFUGAUPCEVFVJVEAVHVIVKUHUGAVAABEFVERSAVBACEGVERSUIJUJAVCDOPEO
647860+
PUQUTUKVDHIUPDEULUMUO $.
647862647861
$}
647863647862

647864647863
${
647865-
fltabcoprm.s $e |- ( ph -> S e. NN ) $.
647866-
fltabcoprm.a $e |- ( ph -> A e. NN ) $.
647867-
fltabcoprm.b $e |- ( ph -> B e. NN ) $.
647868-
fltabcoprm.c $e |- ( ph -> C e. NN ) $.
647869-
fltabcoprm.n $e |- ( ph -> N e. NN0 ) $.
647870-
fltabcoprm.1 $e |- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) $.
647864+
fltabcoprmex.a $e |- ( ph -> A e. NN ) $.
647865+
fltabcoprmex.b $e |- ( ph -> B e. NN ) $.
647866+
fltabcoprmex.c $e |- ( ph -> C e. NN ) $.
647867+
fltabcoprmex.n $e |- ( ph -> N e. NN0 ) $.
647868+
fltabcoprmex.1 $e |- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) $.
647871647869
$( A counterexample to FLT implies a counterexample to FLT with ` A , B `
647872647870
(assigned to ` A / ( A gcd B ) ` and ` B / ( A gcd B ) ` ) coprime (by
647873647871
~ divgcdcoprm0 ). (Contributed by SN, 20-Aug-2024.) $)
647874-
fltabcoprm $p |- ( ph -> ( ( ( A / ( A gcd B ) ) ^ N )
647872+
fltabcoprmex $p |- ( ph -> ( ( ( A / ( A gcd B ) ) ^ N )
647875647873
+ ( ( B / ( A gcd B ) ) ^ N ) )
647876647874
= ( ( C / ( A gcd B ) ) ^ N ) ) $=
647877-
( cgcd co cn wcel gcdnncl syl2anc nncnd nnne0d fltdiv ) ABCDBCMNZFAUBABOP
647878-
COPUBOPHIBCQRZSAUBUCTABHSACISADJSKLUA $.
647875+
( cgcd co cn wcel gcdnncl syl2anc nncnd nnne0d fltdiv ) ABCDBCKLZEATABMNC
647876+
MNTMNFGBCOPZQATUARABFQACGQADHQIJS $.
647879647877

647880647878
$d A i $. $d B i $. $d C i $. $d ph i $.
647881647879
fltaccoprm.1 $e |- ( ph -> ( A gcd B ) = 1 ) $.
647882647880
$( A counterexample to FLT with ` A , B ` coprime also has ` A , C `
647883647881
coprime (and by commutativity, ` B , C ` ). (Contributed by SN,
647884647882
20-Aug-2024.) $)
647885647883
fltaccoprm $p |- ( ph -> ( A gcd C ) = 1 ) $=
647886-
( vi cdvds wbr cn co wcel cz cv wa c1 wceq wi wral cgcd coprmgcdb syl2anc
647887-
wb mpbird simprl cexp cmin simpr adantr dvdsexpim syl3anc anim12d ancomsd
647888-
cn0 nnzd imp nnexpcld ad2antrr dvds2sub mpd nncnd expcld laddrotrd simplr
647889-
breqtrd flt0 dvdsexpnn jca ex imim1d ralimdva mpbid ) ANUAZBOPZVTDOPZUBZV
647890-
TUCUDZUEZNQUFZBDUGRUCUDZAWAVTCOPZUBZWDUEZNQUFZWFAWKBCUGRUCUDZMABQSZCQSZWK
647891-
WLUJHIBCNUHUIUKAWJWENQAVTQSZUBZWCWIWDWPWCWIWPWCUBZWAWHWPWAWBULWQWHVTFUMRZ
647892-
CFUMRZOPZWQWRDFUMRZBFUMRZUNRZWSOWQWRXAOPZWRXBOPZUBZWRXCOPZWPWCXFWPWBWAXFW
647893-
PWBXDWAXEWPVTTSZDTSZFVASZWBXDUEWPVTAWOUOZVBZAXIWOADJVBUPAXJWOKUPZVTDFUQUR
647894-
WPXHBTSZXJWAXEUEXLAXNWOABHVBUPXMVTBFUQURUSUTVCWQWRTSZXATSZXBTSZXFXGUEWPXO
647895-
WCWPWRWPVTFXKXMVDVBUPAXPWOWCAXAADFJKVDVBVEAXQWOWCAXBABFHKVDVBVEWRXAXBVFUR
647896-
VGAXCWSUDWOWCAXBWSXAABFABHVHZKVIACFACIVHZKVILVJVEVLWQWOWNFQSZWHWTUJAWOWCV
647897-
KAWNWOWCIVEAXTWOWCABCDFXRXSADJVHKLVMVEVTCFVNURUKVOVPVQVRVGAWMDQSWFWGUJHJB
647898-
DNUHUIVS $.
647884+
( vi cdvds wbr wa cn co wcel cz nnzd cv c1 wceq wi wral cgcd wb coprmgcdb
647885+
syl2anc mpbird simprl cexp simpr adantr dvdsexpim syl3anc anim12d ancomsd
647886+
cmin cn0 imp nnexpcld ad2antrr dvds2sub mpd nncnd expcld laddrotrd simplr
647887+
breqtrd flt0 dvdsexpnn jca ex imim1d ralimdva mpbid ) ALUAZBMNZVRDMNZOZVR
647888+
UBUCZUDZLPUEZBDUFQUBUCZAVSVRCMNZOZWBUDZLPUEZWDAWIBCUFQUBUCZKABPRZCPRZWIWJ
647889+
UGFGBCLUHUIUJAWHWCLPAVRPRZOZWAWGWBWNWAWGWNWAOZVSWFWNVSVTUKWOWFVREULQZCEUL
647890+
QZMNZWOWPDEULQZBEULQZUSQZWQMWOWPWSMNZWPWTMNZOZWPXAMNZWNWAXDWNVTVSXDWNVTXB
647891+
VSXCWNVRSRZDSRZEUTRZVTXBUDWNVRAWMUMZTZAXGWMADHTUNAXHWMIUNZVRDEUOUPWNXFBSR
647892+
ZXHVSXCUDXJAXLWMABFTUNXKVRBEUOUPUQURVAWOWPSRZWSSRZWTSRZXDXEUDWNXMWAWNWPWN
647893+
VREXIXKVBTUNAXNWMWAAWSADEHIVBTVCAXOWMWAAWTABEFIVBTVCWPWSWTVDUPVEAXAWQUCWM
647894+
WAAWTWQWSABEABFVFZIVGACEACGVFZIVGJVHVCVJWOWMWLEPRZWFWRUGAWMWAVIAWLWMWAGVC
647895+
AXRWMWAABCDEXPXQADHVFIJVKVCVRCEVLUPUJVMVNVOVPVEAWKDPRWDWEUGFHBDLUHUIVQ $.
647896+
$}
647897+
647898+
${
647899+
$d A i $. $d B i $. $d C i $. $d ph i $.
647900+
fltabcoprm.a $e |- ( ph -> A e. NN ) $.
647901+
fltabcoprm.b $e |- ( ph -> B e. NN ) $.
647902+
fltabcoprm.c $e |- ( ph -> C e. NN ) $.
647903+
fltabcoprm.2 $e |- ( ph -> ( A gcd C ) = 1 ) $.
647904+
fltabcoprm.3 $e |- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) $.
647905+
$( A counterexample to FLT with ` A , C ` coprime also has ` A , B `
647906+
coprime. Converse of ~ fltaccoprm . (Contributed by SN,
647907+
22-Aug-2024.) $)
647908+
fltabcoprm $p |- ( ph -> ( A gcd B ) = 1 ) $=
647909+
( vi cdvds wbr wa wceq cn co wcel wb syl2anc c2 cv c1 wral cgcd coprmgcdb
647910+
wi mpbird simprl cexp caddc simplr nnsqcld nnzd ad2antrr dvdssqlem simprr
647911+
mpbid dvds2addd breqtrd jca ex imim1d ralimdva mpd ) AJUAZBKLZVECKLZMZVEU
647912+
BNZUFZJOUCZBCUDPUBNZAVFVEDKLZMZVIUFZJOUCZVKAVPBDUDPUBNZHABOQZDOQZVPVQREGB
647913+
DJUESUGAVOVJJOAVEOQZMZVHVNVIWAVHVNWAVHMZVFVMWAVFVGUHZWBVMVETUIPZDTUIPZKLZ
647914+
WBWDBTUIPZCTUIPZUJPZWEKWBWDWGWHWBWDWBVEAVTVHUKZULUMWBVFWDWGKLZWCWBVTVRVFW
647915+
KRWJAVRVTVHEUNZVEBUOSUQWBVGWDWHKLZWAVFVGUPWBVTCOQZVGWMRWJAWNVTVHFUNZVECUO
647916+
SUQWBWGWBBWLULUMWBWHWBCWOULUMURAWIWENVTVHIUNUSWBVTVSVMWFRWJAVSVTVHGUNVEDU
647917+
OSUGUTVAVBVCVDAVRWNVKVLREFBCJUESUQ $.
647899647918
$}
647900647919

647901647920
${
@@ -647955,7 +647974,6 @@ standardize vectors to a length (norm) of one, but such definitions require
647955647974
$}
647956647975

647957647976
${
647958-
$d A i $. $d B i $. $d C i $. $d ph i $.
647959647977
flt4lem1.a $e |- ( ph -> A e. NN ) $.
647960647978
flt4lem1.b $e |- ( ph -> B e. NN ) $.
647961647979
flt4lem1.c $e |- ( ph -> C e. NN ) $.
@@ -647968,20 +647986,69 @@ standardize vectors to a length (norm) of one, but such definitions require
647968647986
flt4lem1 $p |- ( ph -> ( ( A e. NN /\ B e. NN /\ C e. NN ) /\
647969647987
( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\
647970647988
( ( A gcd B ) = 1 /\ -. 2 || A ) ) ) $=
647971-
( vi cn wcel c2 co cdvds wbr wa wb syl2anc w3a cexp caddc wceq cgcd c1 wn
647972-
3jca cv wi wral coprmgcdb mpbird simprl simplr nnsqcld ad2antrr dvdssqlem
647973-
nnzd mpbid simprr dvds2addd breqtrd jca ex imim1d ralimdva mpd ) ABLMZCLM
647974-
ZDLMZUABNUBOZCNUBOZUCOZDNUBOZUDZBCUEOUFUDZNBPQUGZRAVIVJVKEFGUHJAVQVRAKUIZ
647975-
BPQZVSCPQZRZVSUFUDZUJZKLUKZVQAVTVSDPQZRZWCUJZKLUKZWEAWIBDUEOUFUDZIAVIVKWI
647976-
WJSEGBDKULTUMAWHWDKLAVSLMZRZWBWGWCWLWBWGWLWBRZVTWFWLVTWAUNZWMWFVSNUBOZVOP
647977-
QZWMWOVNVOPWMWOVLVMWMWOWMVSAWKWBUOZUPUSWMVTWOVLPQZWNWMWKVIVTWRSWQAVIWKWBE
647978-
UQZVSBURTUTWMWAWOVMPQZWLVTWAVAWMWKVJWAWTSWQAVJWKWBFUQZVSCURTUTWMVLWMBWSUP
647979-
USWMVMWMCXAUPUSVBAVPWKWBJUQVCWMWKVKWFWPSWQAVKWKWBGUQVSDURTUMVDVEVFVGVHAVI
647980-
VJWEVQSEFBCKULTUTHVDUH $.
647989+
( cn wcel w3a c2 cexp co caddc wceq cgcd 3jca c1 cdvds wbr fltabcoprm jca
647990+
wn wa ) ABKLZCKLZDKLZMBNOPCNOPQPDNOPRBCSPUARZNBUBUCUFZUGAUHUIUJEFGTJAUKUL
647991+
ABCDEFGIJUDHUET $.
647981647992
$}
647982647993

647983647994
${
647984647995
$d A i $. $d B i $. $d C i $. $d ph i $.
647996+
flt4lem2.a $e |- ( ph -> A e. NN ) $.
647997+
flt4lem2.b $e |- ( ph -> B e. NN ) $.
647998+
flt4lem2.c $e |- ( ph -> C e. NN ) $.
647999+
flt4lem2.1 $e |- ( ph -> 2 || A ) $.
648000+
flt4lem2.2 $e |- ( ph -> ( A gcd C ) = 1 ) $.
648001+
flt4lem2.3 $e |- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) $.
648002+
$( If ` A ` is even, ` B ` is odd. (Contributed by SN, 22-Aug-2024.) $)
648003+
flt4lem2 $p |- ( ph -> -. 2 || B ) $=
648004+
( vi c2 cdvds wbr wa wcel cz adantr cn nnzd cgcd co c1 wceq wn wne cv cuz
648005+
cfv wrex breq1 anbi12d 2z uzid ax-mp a1i simpr dvdsgcd syl3anc mp2and 2nn
648006+
wi fltdvdsabdvdsc gcdnncl syl2anc dvdstr rspcedvdw wb ncoprmgcdne1b mpbid
648007+
jca ex necon2bd mpd ) ABDUAUBZUCUDLCMNZUEIAVPVOUCAVPVOUCUFZAVPOZKUGZBMNZV
648008+
SDMNZOZKLUHUIZUJZVQVRWBLBMNZLDMNZOKLWCVSLUDVTWEWAWFVSLBMUKVSLDMUKULLWCPZV
648009+
RLQPZWGUMLUNUOUPVRWEWFAWEVPHRZVRLBCUAUBZMNZWJDMNZWFVRWEVPWKWIAVPUQVRWHBQP
648010+
CQPZWEVPOWKVBWHVRUMUPZVRBABSPZVPERZTAWMVPACFTRLBCURUSUTAWLVPABCDLEFGLSPAV
648011+
AUPJVCRVRWHWJQPZDQPWKWLOWFVBWNAWQVPAWJAWOCSPWJSPEFBCVDVETRVRDADSPZVPGRZTL
648012+
WJDVFUSUTVKVGVRWOWRWDVQVHWPWSBDKVIVEVJVLVMVN $.
648013+
$}
648014+
648015+
${
648016+
flt4lem3.a $e |- ( ph -> A e. NN ) $.
648017+
flt4lem3.b $e |- ( ph -> B e. NN ) $.
648018+
flt4lem3.c $e |- ( ph -> C e. NN ) $.
648019+
flt4lem3.1 $e |- ( ph -> 2 || A ) $.
648020+
flt4lem3.2 $e |- ( ph -> ( A gcd C ) = 1 ) $.
648021+
flt4lem3.3 $e |- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) $.
648022+
$( Equivalent to ~ pythagtriplem4 . Show that ` C + A ` and ` C - A ` are
648023+
coprime. (Contributed by SN, 22-Aug-2024.) $)
648024+
flt4lem3 $p |- ( ph -> ( ( C + A ) gcd ( C - A ) ) = 1 ) $=
648025+
( caddc co cgcd c1 cz wcel wceq cn c2 cexp zaddcld zsubcld gcdcom syl2anc
648026+
cmin nnzd w3a cdvds wbr wn wa flt4lem2 flt4lem1 pythagtriplem4 syl eqtrd
648027+
) ADBKLZDBUELZMLZURUQMLZNAUQOPUROPUSUTQADBADGUFZABEUFZUAADBVAVBUBUQURUCUD
648028+
ACRPBRPDRPUGCSTLBSTLKLDSTLQCBMLNQSCUHUIUJUKUGUTNQACBDFEGABCDEFGHIJUL??UMC
648029+
BDUNUOUP $.
648030+
$}
648031+
648032+
${
648033+
$d ph s $. $d ph t $.
648034+
flt4lem4.a $e |- ( ph -> A e. NN ) $.
648035+
flt4lem4.b $e |- ( ph -> B e. NN ) $.
648036+
flt4lem4.c $e |- ( ph -> C e. NN ) $.
648037+
flt4lem4.1 $e |- ( ph -> ( A gcd B ) = 1 ) $.
648038+
flt4lem4.2 $e |- ( ph -> ( A x. B ) = ( C ^ 2 ) ) $.
648039+
$( If the product of two coprime factors is a perfect square, the factors
648040+
are perfect squares. (Contributed by SN, 22-Aug-2024.) $)
648041+
flt4lem4 $p |-
648042+
( ph -> ( A = ( ( A gcd C ) ^ 2 ) /\ B = ( ( B gcd C ) ^ 2 ) ) ) $=
648043+
( cgcd co c2 cexp wceq cn0 wcel cz c1 wi nnnn0d eqcomd nn0zd oveq1d eqtrd
648044+
cmul 1gcd syl coprimeprodsq syl31anc mpd nnzd coprimeprodsq2 jca ) ABBDJK
648045+
LMKNZCCDJKLMKNZADLMKZBCUEKZNZUNAUQUPIUAZABOPCQPDOPZBCJKZDJKZRNZURUNSABETA
648046+
CACFTZUBADGTZAVBRDJKZRAVARDJHUCADQPVFRNADVEUBDUFUGUDZBCDUHUIUJAURUOUSABQP
648047+
COPUTVCURUOSABEUKVDVEVGBCDULUIUJUM $.
648048+
$}
648049+
648050+
648051+
${
647985648052
flt4lem6a.a $e |- ( ph -> A e. NN ) $.
647986648053
flt4lem6a.b $e |- ( ph -> B e. NN ) $.
647987648054
flt4lem6a.c $e |- ( ph -> C e. NN ) $.
@@ -648038,7 +648105,7 @@ standardize vectors to a length (norm) of one, but such definitions require
648038648105
$( Construct a smaller counterexample when ` A ` is even. (Contributed by
648039648106
SN, 21-Aug-2024.) $)
648040648107
flt4lem6b $p |- ( ph -> ? ) $=
648041-
? $.
648108+
( ) ? $.
648042648109
$}
648043648110

648044648111
${
@@ -648052,8 +648119,8 @@ standardize vectors to a length (norm) of one, but such definitions require
648052648119
by SN, 20-Aug-2024.) $)
648053648120
flt4lem6 $p |- ( ph -> E. z e. NN ( E. d e. NN E. e e. NN (
648054648121
( d gcd z ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 2 ) ) = ( z ^ 4 ) ) /\
648055-
z < C ) $=
648056-
? $.
648122+
z < C ) ) $=
648123+
( ) ? $.
648057648124
$}
648058648125

648059648126
${

0 commit comments

Comments
 (0)