@@ -124599,6 +124599,98 @@ seq n ( x. ,
124599
124599
PEFPVEKULAVEUNUOAVHVCMTDPMUPZUQVCVEUQJMDURVIVEVCMDUSVAUTVB $.
124600
124600
$}
124601
124601
124602
+ ${
124603
+ $d A k x y $. $d B x y $. $d ph k x y $.
124604
+ fprodcl.1 $e |- ( ph -> A e. Fin ) $.
124605
+
124606
+ ${
124607
+ fprodcl.2 $e |- ( ( ph /\ k e. A ) -> B e. CC ) $.
124608
+ $( Closure of a finite product of complex numbers. (Contributed by Scott
124609
+ Fenton, 14-Dec-2017.) $)
124610
+ fprodcl $p |- ( ph -> prod_ k e. A B e. CC ) $=
124611
+ ( vx vy cc ssidd cv wcel wa cmul co mulcl adantl 1cnd fprodcllem ) AGHB
124612
+ CIDAIJGKZILHKZILMTUANOILATUAPQEFARS $.
124613
+ $}
124614
+
124615
+ ${
124616
+ fprodrecl.2 $e |- ( ( ph /\ k e. A ) -> B e. RR ) $.
124617
+ $( Closure of a finite product of real numbers. (Contributed by Scott
124618
+ Fenton, 14-Dec-2017.) $)
124619
+ fprodrecl $p |- ( ph -> prod_ k e. A B e. RR ) $=
124620
+ ( vx vy cr cc wss ax-resscn a1i cv wcel wa cmul co remulcl adantl 1red
124621
+ fprodcllem ) AGHBCIDIJKALMGNZIOHNZIOPUCUDQRIOAUCUDSTEFAUAUB $.
124622
+ $}
124623
+
124624
+ ${
124625
+ fprodzcl.2 $e |- ( ( ph /\ k e. A ) -> B e. ZZ ) $.
124626
+ $( Closure of a finite product of integers. (Contributed by Scott
124627
+ Fenton, 14-Dec-2017.) $)
124628
+ fprodzcl $p |- ( ph -> prod_ k e. A B e. ZZ ) $=
124629
+ ( vx vy cz cc wss zsscn a1i cv wcel wa cmul co zmulcl adantl fprodcllem
124630
+ 1zzd ) AGHBCIDIJKALMGNZIOHNZIOPUCUDQRIOAUCUDSTEFAUBUA $.
124631
+ $}
124632
+
124633
+ ${
124634
+ fprodnncl.2 $e |- ( ( ph /\ k e. A ) -> B e. NN ) $.
124635
+ $( Closure of a finite product of positive integers. (Contributed by
124636
+ Scott Fenton, 14-Dec-2017.) $)
124637
+ fprodnncl $p |- ( ph -> prod_ k e. A B e. NN ) $=
124638
+ ( vx vy cn cc wss nnsscn a1i cv wcel wa cmul co nnmulcl adantl c1 1nn
124639
+ fprodcllem ) AGHBCIDIJKALMGNZIOHNZIOPUDUEQRIOAUDUESTEFUAIOAUBMUC $.
124640
+ $}
124641
+
124642
+ ${
124643
+ fprodrpcl.2 $e |- ( ( ph /\ k e. A ) -> B e. RR+ ) $.
124644
+ $( Closure of a finite product of positive reals. (Contributed by Scott
124645
+ Fenton, 14-Dec-2017.) $)
124646
+ fprodrpcl $p |- ( ph -> prod_ k e. A B e. RR+ ) $=
124647
+ ( vx vy crp cc wss cr rpssre ax-resscn sstri a1i cv wcel wa cmul adantl
124648
+ co rpmulcl c1 1rp fprodcllem ) AGHBCIDIJKAILJMNOPGQZIRHQZIRSUGUHTUBIRAU
124649
+ GUHUCUAEFUDIRAUEPUF $.
124650
+ $}
124651
+
124652
+ ${
124653
+ fprodnn0cl.2 $e |- ( ( ph /\ k e. A ) -> B e. NN0 ) $.
124654
+ $( Closure of a finite product of nonnegative integers. (Contributed by
124655
+ Scott Fenton, 14-Dec-2017.) $)
124656
+ fprodnn0cl $p |- ( ph -> prod_ k e. A B e. NN0 ) $=
124657
+ ( vx vy cn0 cc wss nn0sscn a1i cv wcel wa cmul co nn0mulcl adantl 1nn0
124658
+ c1 fprodcllem ) AGHBCIDIJKALMGNZIOHNZIOPUDUEQRIOAUDUESTEFUBIOAUAMUC $.
124659
+ $}
124660
+ $}
124661
+
124662
+ ${
124663
+ $d A j k x y $. $d B j x y $. $d S j k x y $. $d j ph x y $.
124664
+ fprodcllemf.ph $e |- F/ k ph $.
124665
+ fprodcllemf.s $e |- ( ph -> S C_ CC ) $.
124666
+ fprodcllemf.xy $e |- ( ( ph /\ ( x e. S /\ y e. S ) )
124667
+ -> ( x x. y ) e. S ) $.
124668
+ fprodcllemf.a $e |- ( ph -> A e. Fin ) $.
124669
+ fprodcllemf.b $e |- ( ( ph /\ k e. A ) -> B e. S ) $.
124670
+ fprodcllemf.1 $e |- ( ph -> 1 e. S ) $.
124671
+ $( Finite product closure lemma. A version of ~ fprodcllem using
124672
+ bound-variable hypotheses instead of distinct variable conditions.
124673
+ (Contributed by Glauco Siliprandi, 5-Apr-2020.) $)
124674
+ fprodcllemf $p |- ( ph -> prod_ k e. A B e. S ) $=
124675
+ ( vj cprod cv csb nfcv nfcsb1v wcel csbeq1a cbvprodi wa wsbc wral ralrimi
124676
+ ex rspsbc mpan9 wb cvv sbcel1g elv sylib fprodcllem eqeltrid ) ADEGODGNPZ
124677
+ EQZNOFDEURGNNERGUQESGUQEUAUBABCDURFNIJKAUQDTZUCEFTZGUQUDZURFTZAUTGDUEUSVA
124678
+ AUTGDHAGPDTUTLUGUFUTGUQDUHUIVAVBUJNGUQEFUKULUMUNMUOUP $.
124679
+ $}
124680
+
124681
+ ${
124682
+ $d A k x y $. $d B x y $. $d ph x y $.
124683
+ fprodreclf.kph $e |- F/ k ph $.
124684
+ fprodcl.a $e |- ( ph -> A e. Fin ) $.
124685
+ fprodrecl.b $e |- ( ( ph /\ k e. A ) -> B e. RR ) $.
124686
+ $( Closure of a finite product of real numbers. A version of ~ fprodrecl
124687
+ using bound-variable hypotheses instead of distinct variable conditions.
124688
+ (Contributed by Glauco Siliprandi, 5-Apr-2020.) $)
124689
+ fprodreclf $p |- ( ph -> prod_ k e. A B e. RR ) $=
124690
+ ( vx vy cr cc wss ax-resscn a1i cv wcel wa cmul co remulcl adantl 1red
124691
+ fprodcllemf ) AHIBCJDEJKLAMNHOZJPIOZJPQUDUERSJPAUDUETUAFGAUBUC $.
124692
+ $}
124693
+
124602
124694
124603
124695
$(
124604
124696
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
0 commit comments