Skip to content

Commit 964524b

Browse files
committed
Add finite product closure theorems to iset.mm
These are fprodcl , fprodrecl , fprodzcl , fprodnncl , fprodrpcl , fprodnn0cl , fprodcllemf , and fprodreclf They are copied from set.mm without change.
1 parent 67ca66d commit 964524b

File tree

1 file changed

+92
-0
lines changed

1 file changed

+92
-0
lines changed

iset.mm

Lines changed: 92 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -124599,6 +124599,98 @@ seq n ( x. ,
124599124599
PEFPVEKULAVEUNUOAVHVCMTDPMUPZUQVCVEUQJMDURVIVEVCMDUSVAUTVB $.
124600124600
$}
124601124601

124602+
${
124603+
$d A k x y $. $d B x y $. $d ph k x y $.
124604+
fprodcl.1 $e |- ( ph -> A e. Fin ) $.
124605+
124606+
${
124607+
fprodcl.2 $e |- ( ( ph /\ k e. A ) -> B e. CC ) $.
124608+
$( Closure of a finite product of complex numbers. (Contributed by Scott
124609+
Fenton, 14-Dec-2017.) $)
124610+
fprodcl $p |- ( ph -> prod_ k e. A B e. CC ) $=
124611+
( vx vy cc ssidd cv wcel wa cmul co mulcl adantl 1cnd fprodcllem ) AGHB
124612+
CIDAIJGKZILHKZILMTUANOILATUAPQEFARS $.
124613+
$}
124614+
124615+
${
124616+
fprodrecl.2 $e |- ( ( ph /\ k e. A ) -> B e. RR ) $.
124617+
$( Closure of a finite product of real numbers. (Contributed by Scott
124618+
Fenton, 14-Dec-2017.) $)
124619+
fprodrecl $p |- ( ph -> prod_ k e. A B e. RR ) $=
124620+
( vx vy cr cc wss ax-resscn a1i cv wcel wa cmul co remulcl adantl 1red
124621+
fprodcllem ) AGHBCIDIJKALMGNZIOHNZIOPUCUDQRIOAUCUDSTEFAUAUB $.
124622+
$}
124623+
124624+
${
124625+
fprodzcl.2 $e |- ( ( ph /\ k e. A ) -> B e. ZZ ) $.
124626+
$( Closure of a finite product of integers. (Contributed by Scott
124627+
Fenton, 14-Dec-2017.) $)
124628+
fprodzcl $p |- ( ph -> prod_ k e. A B e. ZZ ) $=
124629+
( vx vy cz cc wss zsscn a1i cv wcel wa cmul co zmulcl adantl fprodcllem
124630+
1zzd ) AGHBCIDIJKALMGNZIOHNZIOPUCUDQRIOAUCUDSTEFAUBUA $.
124631+
$}
124632+
124633+
${
124634+
fprodnncl.2 $e |- ( ( ph /\ k e. A ) -> B e. NN ) $.
124635+
$( Closure of a finite product of positive integers. (Contributed by
124636+
Scott Fenton, 14-Dec-2017.) $)
124637+
fprodnncl $p |- ( ph -> prod_ k e. A B e. NN ) $=
124638+
( vx vy cn cc wss nnsscn a1i cv wcel wa cmul co nnmulcl adantl c1 1nn
124639+
fprodcllem ) AGHBCIDIJKALMGNZIOHNZIOPUDUEQRIOAUDUESTEFUAIOAUBMUC $.
124640+
$}
124641+
124642+
${
124643+
fprodrpcl.2 $e |- ( ( ph /\ k e. A ) -> B e. RR+ ) $.
124644+
$( Closure of a finite product of positive reals. (Contributed by Scott
124645+
Fenton, 14-Dec-2017.) $)
124646+
fprodrpcl $p |- ( ph -> prod_ k e. A B e. RR+ ) $=
124647+
( vx vy crp cc wss cr rpssre ax-resscn sstri a1i cv wcel wa cmul adantl
124648+
co rpmulcl c1 1rp fprodcllem ) AGHBCIDIJKAILJMNOPGQZIRHQZIRSUGUHTUBIRAU
124649+
GUHUCUAEFUDIRAUEPUF $.
124650+
$}
124651+
124652+
${
124653+
fprodnn0cl.2 $e |- ( ( ph /\ k e. A ) -> B e. NN0 ) $.
124654+
$( Closure of a finite product of nonnegative integers. (Contributed by
124655+
Scott Fenton, 14-Dec-2017.) $)
124656+
fprodnn0cl $p |- ( ph -> prod_ k e. A B e. NN0 ) $=
124657+
( vx vy cn0 cc wss nn0sscn a1i cv wcel wa cmul co nn0mulcl adantl 1nn0
124658+
c1 fprodcllem ) AGHBCIDIJKALMGNZIOHNZIOPUDUEQRIOAUDUESTEFUBIOAUAMUC $.
124659+
$}
124660+
$}
124661+
124662+
${
124663+
$d A j k x y $. $d B j x y $. $d S j k x y $. $d j ph x y $.
124664+
fprodcllemf.ph $e |- F/ k ph $.
124665+
fprodcllemf.s $e |- ( ph -> S C_ CC ) $.
124666+
fprodcllemf.xy $e |- ( ( ph /\ ( x e. S /\ y e. S ) )
124667+
-> ( x x. y ) e. S ) $.
124668+
fprodcllemf.a $e |- ( ph -> A e. Fin ) $.
124669+
fprodcllemf.b $e |- ( ( ph /\ k e. A ) -> B e. S ) $.
124670+
fprodcllemf.1 $e |- ( ph -> 1 e. S ) $.
124671+
$( Finite product closure lemma. A version of ~ fprodcllem using
124672+
bound-variable hypotheses instead of distinct variable conditions.
124673+
(Contributed by Glauco Siliprandi, 5-Apr-2020.) $)
124674+
fprodcllemf $p |- ( ph -> prod_ k e. A B e. S ) $=
124675+
( vj cprod cv csb nfcv nfcsb1v wcel csbeq1a cbvprodi wa wsbc wral ralrimi
124676+
ex rspsbc mpan9 wb cvv sbcel1g elv sylib fprodcllem eqeltrid ) ADEGODGNPZ
124677+
EQZNOFDEURGNNERGUQESGUQEUAUBABCDURFNIJKAUQDTZUCEFTZGUQUDZURFTZAUTGDUEUSVA
124678+
AUTGDHAGPDTUTLUGUFUTGUQDUHUIVAVBUJNGUQEFUKULUMUNMUOUP $.
124679+
$}
124680+
124681+
${
124682+
$d A k x y $. $d B x y $. $d ph x y $.
124683+
fprodreclf.kph $e |- F/ k ph $.
124684+
fprodcl.a $e |- ( ph -> A e. Fin ) $.
124685+
fprodrecl.b $e |- ( ( ph /\ k e. A ) -> B e. RR ) $.
124686+
$( Closure of a finite product of real numbers. A version of ~ fprodrecl
124687+
using bound-variable hypotheses instead of distinct variable conditions.
124688+
(Contributed by Glauco Siliprandi, 5-Apr-2020.) $)
124689+
fprodreclf $p |- ( ph -> prod_ k e. A B e. RR ) $=
124690+
( vx vy cr cc wss ax-resscn a1i cv wcel wa cmul co remulcl adantl 1red
124691+
fprodcllemf ) AHIBCJDEJKLAMNHOZJPIOZJPQUDUERSJPAUDUETUAFGAUBUC $.
124692+
$}
124693+
124602124694

124603124695
$(
124604124696
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

0 commit comments

Comments
 (0)