Skip to content

Commit ce1b769

Browse files
committed
Add fprodunsn to iset.mm
This is a variation of fprodsplitdc intended to be helpful when doing finite set induction.
1 parent 838190a commit ce1b769

File tree

1 file changed

+26
-0
lines changed

1 file changed

+26
-0
lines changed

iset.mm

Lines changed: 26 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -124523,6 +124523,32 @@ seq n ( x. ,
124523124523
PQS $.
124524124524
$}
124525124525

124526+
${
124527+
$d A j k $. $d B j k $. $d V k $. $d j k ph $. $d A k $. $d B k $.
124528+
$d k ph $.
124529+
fprodunsn.f $e |- F/_ k D $.
124530+
fprodunsn.a $e |- ( ph -> A e. Fin ) $.
124531+
fprodunsn.b $e |- ( ph -> B e. V ) $.
124532+
fprodunsn.ba $e |- ( ph -> -. B e. A ) $.
124533+
fprodunsn.ccl $e |- ( ( ph /\ k e. A ) -> C e. CC ) $.
124534+
fprodunsn.dcl $e |- ( ph -> D e. CC ) $.
124535+
fprodunsn.d $e |- ( k = B -> C = D ) $.
124536+
$( Multiply in an additional term in a finite product. (Contributed by Jim
124537+
Kingdon, 16-Aug-2024.) $)
124538+
fprodunsn $p |- ( ph -> prod_ k e. ( A u. { B } ) C
124539+
= ( prod_ k e. A C x. D ) ) $=
124540+
( vj cprod cmul wcel wceq wa csn cun co wn cin c0 disjsn sylibr eqidd cfn
124541+
unsnfi syl3anc cv wdc simpr orcd df-dc velsn sylib ad2antrr eqneltrd olcd
124542+
wo biimpi adantl mpjaodan ralrimiva cc adantlr elsni eqeltrd fprodsplitdc
124543+
elun syl prodsnf syl2anc oveq2d eqtrd ) ABCUAZUBZDFPBDFPZVSDFPZQUCWAEQUCA
124544+
BVSDVTOFACBRUDZBVSUEUFSKBCUGUHAVTUIABUJRCGRZWCVTUJRIJKBCGUKULAOUMZBRZUNZO
124545+
VTAWEVTRZTZWFWGWEVSRZWIWFTZWFWFUDZVCZWGWKWFWLWIWFUOUPWFUQZUHWIWJTZWMWGWOW
124546+
LWFWOWECBWOWJWECSWIWJUOOCURUSAWCWHWJKUTVAVBWNUHWHWFWJVCZAWHWPWEBVSVMVDVEV
124547+
FVGAFUMZVTRZTZWQBRZDVHRZWQVSRZAWTXAWRLVIWSXBTZDEVHXCWQCSZDESXBXDWSWQCVJVE
124548+
NVNAEVHRZWRXBMUTVKWRWTXBVCZAWRXFWQBVSVMVDVEVFVLAWBEWAQAWDXEWBESJMDEFCGHNV
124549+
OVPVQVR $.
124550+
$}
124551+
124526124552

124527124553
$(
124528124554
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

0 commit comments

Comments
 (0)