@@ -131784,15 +131784,20 @@ nonnegative integers (cont.)". $)
131784
131784
EZBJEZUHUGKZABLZABMZUIAQEBQEUKUJANBNABROPSUCUJUIUFUGKZUMULUJUEJEUDJEUNUIBTA
131785
131785
TUEUDUAOPUB $.
131786
131786
131787
+ $( An upper set of integers is a subset of all integers. (Contributed by NM,
131788
+ 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) $)
131789
+ uzssz $p |- ( ZZ>= ` M ) C_ ZZ $=
131790
+ ( cuz cdm wcel cfv cz wss cpw ffvelrni elpwid fdmi eleq2s wn ndmfv eqsstrdi
131791
+ uzf c0 0ss pm2.61i ) ABCZDZABEZFGZUCAFTAFDUBFFFHZABPIJFUDBPKLUAMUBQFABNFROS
131792
+ $.
131793
+
131794
+ $( An upper set of integers is a subset of the reals. (Contributed by Glauco
131795
+ Siliprandi, 23-Oct-2021.) $)
131796
+ uzssre $p |- ( ZZ>= ` M ) C_ RR $=
131797
+ ( cuz cfv cz cr uzssz zssre sstri ) ABCDEAFGH $.
131798
+
131787
131799
${
131788
131800
$d k M $. $d k N $.
131789
- $( An upper set of integers is a subset of all integers. (Contributed by
131790
- NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) $)
131791
- uzssz $p |- ( ZZ>= ` M ) C_ ZZ $=
131792
- ( cuz cdm wcel cfv cz wss cpw uzf ffvelrni elpwid fdmi eleq2s wn c0 ndmfv
131793
- 0ss eqsstrdi pm2.61i ) ABCZDZABEZFGZUCAFTAFDUBFFFHZABIJKFUDBILMUANUBOFABP
131794
- FQRS $.
131795
-
131796
131801
$( Subset relationship for two sets of upper integers. (Contributed by NM,
131797
131802
5-Sep-2005.) $)
131798
131803
uzss $p |- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) $=
@@ -643213,6 +643218,18 @@ D Fn ( I ... ( M - 1 ) ) /\
643213
643218
$( $j usage '19.9dev' avoids 'ax-10'; $)
643214
643219
$}
643215
643220
643221
+ ${
643222
+ $d A x $. $d B x $. $d ch x $.
643223
+ rspcedvdw.s $e |- ( x = A -> ( ps <-> ch ) ) $.
643224
+ rspcedvdw.1 $e |- ( ph -> A e. B ) $.
643225
+ rspcedvdw.2 $e |- ( ph -> ch ) $.
643226
+ $( Version of ~ rspcedvd where the implicit substitution hypothesis does
643227
+ not have an antecedent, which also avoids a disjoint variable condition
643228
+ on ` ph , x ` . (Contributed by SN, 20-Aug-2024.) $)
643229
+ rspcedvdw $p |- ( ph -> E. x e. B ps ) $=
643230
+ ( wcel wrex rspcev syl2anc ) AEFJCBDFKHIBCDEFGLM $.
643231
+ $}
643232
+
643216
643233
${
643217
643234
$d ph x y z $. $d ch x $. $d th y $. $d ta z $. $d D x y z $.
643218
643235
$d A x y z $. $d B y z $. $d C z $.
@@ -645688,8 +645705,10 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
645688
645705
exp11d.3 $e |- ( ph -> N e. ZZ ) $.
645689
645706
exp11d.4 $e |- ( ph -> N =/= 0 ) $.
645690
645707
exp11d.5 $e |- ( ph -> ( A ^ N ) = ( B ^ N ) ) $.
645691
- $( ~ sq11d for positive real bases and nonzero exponents. (Contributed by
645692
- Steven Nguyen, 6-Apr-2023.) $)
645708
+ $( ~ sq11d for positive real bases and nonzero exponents. The base cannot
645709
+ be generalized much further, since if ` N ` is even then we have
645710
+ ` A ^ N = -u A ^ N ` . TODO-SN: Avoid ~ df-cxp . (Contributed by SN,
645711
+ 6-Apr-2023.) $)
645693
645712
exp11d $p |- ( ph -> A = B ) $=
645694
645713
( ccxp co c1 cexp rpcnd rpne0d cxpexpzd oveq2d cxpmuld cxp1d 3eqtr3d cdiv
645695
645714
3eqtr4d oveq1d cmul zcnd recidd zred reccld ) ABDJKZLDUAKZJKZCDJKZUJJKZBC
@@ -645698,6 +645717,20 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
645698
645717
USUTRACUOSTT $.
645699
645718
$}
645700
645719
645720
+ $( ~ dvdssqlem generalized to positive integer exponents. (Contributed by
645721
+ SN, 20-Aug-2024.) $)
645722
+ dvdsexplem $p |- ( ( A e. NN /\ B e. NN /\ N e. NN ) ->
645723
+ ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) $=
645724
+ ( cn wcel w3a cdvds wbr cexp co cz cn0 nnz wa nnrpd 3adant3 adantr nnexpcld
645725
+ cgcd wceq wi nnnn0 dvdsexpim syl3an crp gcdnncl simpl1 simpl3 nnne0d expgcd
645726
+ nnzd syl3an3 simp1 3ad2ant3 simp2 gcdeq syl2anc biimpar eqtrd exp11d simprd
645727
+ wb gcddvds syl2an eqbrtrrd ex impbid ) ADEZBDEZCDEZFZABGHZACIJZBCIJZGHZVHAK
645728
+ EZVIBKEZVJCLEZVLVOUAAMZBMZCUBZABCUCUDVKVOVLVKVONZABSJZABGWBWCACVKWCUEEZVOVH
645729
+ VIWDVJVHVINWCABUFOPQWBAVHVIVJVOUGOWBCVHVIVJVOUHZUKWBCWEUIWBWCCIJZVMVNSJZVMV
645730
+ KWFWGTZVOVJVHVIVRWHWAABCUJULQVKWGVMTZVOVKVMDEVNDEWIVOVBVKACVHVIVJUMVJVHVRVI
645731
+ WAUNZRVKBCVHVIVJUOWJRVMVNUPUQURUSUTVKWCBGHZVOVHVIWKVJVHVPVQWKVIVSVTVPVQNWCA
645732
+ GHWKABVCVAVDPQVEVFVG $.
645733
+
645701
645734
${
645702
645735
ltexp1d.1 $e |- ( ph -> A e. RR+ ) $.
645703
645736
ltexp1d.2 $e |- ( ph -> B e. RR+ ) $.
@@ -647466,7 +647499,7 @@ standardize vectors to a length (norm) of one, but such definitions require
647466
647499
prjspnenm1.g $e |- G = ??? $.
647467
647500
@( A bijection between an n-dimensional projective space and its
647468
647501
(n-1)-dimensional affine and projective spaces. (Contributed by Steven
647469
- Nguyen, ??-??-2023 .) @)
647502
+ Nguyen, ??-???-202? .) @)
647470
647503
prjspnf1om1 @p |- ( ( N e. NN /\ K e. DivRing ) ->
647471
647504
( F u. G ) : ( N PrjSpn K ) -1-1-onto-> (
647472
647505
( ( K ^m ( 0 ..^ ( N - 1 ) ) ) |_| ( ( N - 1 ) PrjSpn K ) ) ) @=
@@ -647669,6 +647702,164 @@ standardize vectors to a length (norm) of one, but such definitions require
647669
647702
IUWJUWKUWLUWM $.
647670
647703
$}
647671
647704
647705
+ ${
647706
+ fltmul.s $e |- ( ph -> S e. CC ) $.
647707
+ fltmul.a $e |- ( ph -> A e. CC ) $.
647708
+ fltmul.b $e |- ( ph -> B e. CC ) $.
647709
+ fltmul.c $e |- ( ph -> C e. CC ) $.
647710
+ fltmul.n $e |- ( ph -> N e. NN0 ) $.
647711
+ fltmul.1 $e |- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) $.
647712
+ $( A counterexample to FLT stays valid when scaled. The hypotheses are
647713
+ more general than they need to be for convenience. (There does not seem
647714
+ to be a standard term for Fermat or Pythagorean triples extended to any
647715
+ ` N e. NN0 ` , hence the label is more about the context in which this
647716
+ theorem is used). (Contributed by SN, 20-Aug-2024.) $)
647717
+ fltmul $p |- ( ph
647718
+ -> ( ( ( S x. A ) ^ N ) + ( ( S x. B ) ^ N ) ) = ( ( S x. C ) ^ N ) ) $=
647719
+ ( cexp co cmul caddc expcld adddid oveq2d mulexpd eqtr3d oveq12d 3eqtr4d
647720
+ ) AEFMNZBFMNZONZUDCFMNZONZPNZUDDFMNZONZEBONFMNZECONFMNZPNEDONFMNAUDUEUGPN
647721
+ ZONUIUKAUDUEUGAEFGKQABFHKQACFIKQRAUNUJUDOLSUAAULUFUMUHPAEBFGHKTAECFGIKTUB
647722
+ AEDFGJKTUC $.
647723
+ $}
647724
+
647725
+ ${
647726
+ fltdiv.s $e |- ( ph -> S e. CC ) $.
647727
+ fltdiv.0 $e |- ( ph -> S =/= 0 ) $.
647728
+ fltdiv.a $e |- ( ph -> A e. CC ) $.
647729
+ fltdiv.b $e |- ( ph -> B e. CC ) $.
647730
+ fltdiv.c $e |- ( ph -> C e. CC ) $.
647731
+ fltdiv.n $e |- ( ph -> N e. NN0 ) $.
647732
+ fltdiv.1 $e |- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) $.
647733
+ $( A counterexample to FLT stays valid when scaled. The hypotheses are
647734
+ more general than they need to be for convenience. (Contributed by SN,
647735
+ 20-Aug-2024.) $)
647736
+ fltdiv $p |- ( ph
647737
+ -> ( ( ( A / S ) ^ N ) + ( ( B / S ) ^ N ) ) = ( ( C / S ) ^ N ) ) $=
647738
+ ( cexp co cdiv caddc expcld nn0zd expdivd expne0d divdird oveq12d 3eqtr4d
647739
+ oveq1d eqtr3d ) ABFNOZEFNOZPOZCFNOZUHPOZQOZDFNOZUHPOZBEPOFNOZCEPOFNOZQODE
647740
+ POFNOAUGUJQOZUHPOULUNAUGUJUHABFILRACFJLRAEFGLRAEFGHAFLSUAUBAUQUMUHPMUEUFA
647741
+ UOUIUPUKQABEFIGHLTACEFJGHLTUCADEFKGHLTUD $.
647742
+ $}
647743
+
647744
+ ${
647745
+ flt0.a $e |- ( ph -> A e. CC ) $.
647746
+ flt0.b $e |- ( ph -> B e. CC ) $.
647747
+ flt0.c $e |- ( ph -> C e. CC ) $.
647748
+ flt0.n $e |- ( ph -> N e. NN0 ) $.
647749
+ flt0.1 $e |- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) $.
647750
+ $( A counterexample for FLT does not exist for ` N = 0 ` . (Contributed by
647751
+ SN, 20-Aug-2024.) $)
647752
+ flt0 $p |- ( ph -> N e. NN ) $=
647753
+ ( wcel cc0 wne cexp co caddc c1 exp0d wceq oveq2 cn0 cn c2 sn-1ne2 necomi
647754
+ 1p1e2 eqnetri a1i oveq12d 3netr4d eqeq12d syl5ibcom imp mteqand sylanbrc
647755
+ elnnne0 ) AEUAKELMEUBKIAELBLNOZCLNOZPOZDLNOZAQQPOZQUSUTVAQMAVAUCQUFQUCUDU
647756
+ EUGUHAUQQURQPABFRACGRUIADHRUJAELSZUSUTSZABENOZCENOZPOZDENOZSVBVCJVBVFUSVG
647757
+ UTVBVDUQVEURPELBNTELCNTUIELDNTUKULUMUNEUPUO $.
647758
+ $}
647759
+
647760
+ ${
647761
+ fltabcoprm.s $e |- ( ph -> S e. NN ) $.
647762
+ fltabcoprm.a $e |- ( ph -> A e. NN ) $.
647763
+ fltabcoprm.b $e |- ( ph -> B e. NN ) $.
647764
+ fltabcoprm.c $e |- ( ph -> C e. NN ) $.
647765
+ fltabcoprm.n $e |- ( ph -> N e. NN0 ) $.
647766
+ fltabcoprm.1 $e |- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) $.
647767
+ $( A counterexample to FLT implies a counterexample to FLT with ` A , B `
647768
+ (assigned to ` A / ( A gcd B ) ` and ` B / ( A gcd B ) ` ) coprime (by
647769
+ ~ divgcdcoprm0 ). (Contributed by SN, 20-Aug-2024.) $)
647770
+ fltabcoprm $p |- ( ph -> ( ( ( A / ( A gcd B ) ) ^ N )
647771
+ + ( ( B / ( A gcd B ) ) ^ N ) )
647772
+ = ( ( C / ( A gcd B ) ) ^ N ) ) $=
647773
+ ( cgcd co cn wcel gcdnncl syl2anc nncnd nnne0d fltdiv ) ABCDBCMNZFAUBABOP
647774
+ COPUBOPHIBCQRZSAUBUCTABHSACISADJSKLUA $.
647775
+
647776
+ $d A i $. $d B i $. $d C i $. $d ph i $.
647777
+ fltaccoprm.1 $e |- ( ph -> ( A gcd B ) = 1 ) $.
647778
+ $( A counterexample to FLT with ` A , B ` coprime also has ` A , C `
647779
+ coprime (and by commutativity, ` B , C ` ). (Contributed by SN,
647780
+ 20-Aug-2024.) $)
647781
+ fltaccoprm $p |- ( ph -> ( A gcd C ) = 1 ) $=
647782
+ ( vi cdvds wbr cn co wcel cz cv wa c1 wceq wi wral cgcd coprmgcdb syl2anc
647783
+ wb mpbird simprl cexp cmin simpr adantr dvdsexpim syl3anc anim12d ancomsd
647784
+ cn0 imp nnexpcld ad2antrr dvds2sub mpd nncnd expcld caddc eqcomd mvrladdd
647785
+ nnzd breqtrd simplr flt0 dvdsexplem jca ex imim1d ralimdva mpbid ) ANUAZB
647786
+ OPZWBDOPZUBZWBUCUDZUEZNQUFZBDUGRUCUDZAWCWBCOPZUBZWFUEZNQUFZWHAWMBCUGRUCUD
647787
+ ZMABQSZCQSZWMWNUJHIBCNUHUIUKAWLWGNQAWBQSZUBZWEWKWFWRWEWKWRWEUBZWCWJWRWCWD
647788
+ ULWSWJWBFUMRZCFUMRZOPZWSWTDFUMRZBFUMRZUNRZXAOWSWTXCOPZWTXDOPZUBZWTXEOPZWR
647789
+ WEXHWRWDWCXHWRWDXFWCXGWRWBTSZDTSZFVASZWDXFUEWRWBAWQUOZVLZAXKWQADJVLUPAXLW
647790
+ QKUPZWBDFUQURWRXJBTSZXLWCXGUEXNAXPWQABHVLUPXOWBBFUQURUSUTVBWSWTTSZXCTSZXD
647791
+ TSZXHXIUEWRXQWEWRWTWRWBFXMXOVCVLUPAXRWQWEAXCADFJKVCVLVDAXSWQWEAXDABFHKVCV
647792
+ LVDWTXCXDVEURVFAXEXAUDWQWEAXCXDXAABFABHVGZKVHACFACIVGZKVHAXDXAVIRXCLVJVKV
647793
+ DVMWSWQWPFQSZWJXBUJAWQWEVNAWPWQWEIVDAYBWQWEABCDFXTYAADJVGKLVOVDWBCFVPURUK
647794
+ VQVRVSVTVFAWODQSWHWIUJHJBDNUHUIWA $.
647795
+ $}
647796
+
647797
+ ${
647798
+ $d ph x z $. $d ps x z $. $d ch y $. $d th y $. $d A y z $.
647799
+ $d S x y z $.
647800
+ flt4lem.1 $e |- ( y = x -> ( ps <-> ch ) ) $.
647801
+ flt4lem.2 $e |- ( y = A -> ( ps <-> th ) ) $.
647802
+ flt4lem.3 $e |- ( ph -> S C_ ( ZZ>= ` M ) ) $.
647803
+ flt4lem.4 $e |- ( ( ph /\ ( x e. S /\ ch ) ) -> A e. S ) $.
647804
+ flt4lem.5 $e |- ( ( ph /\ ( x e. S /\ ch ) ) -> th ) $.
647805
+ flt4lem.6 $e |- ( ( ph /\ ( x e. S /\ ch ) ) -> A < x ) $.
647806
+ $( Infinite descent. The hypotheses say that ` S ` is lower bounded, and
647807
+ that if ` ps ` holds for an integer in ` S ` , it holds for a smaller
647808
+ integer in ` S ` . By infinite descent, eventually we cannot go any
647809
+ smaller, therefore ` ps ` holds for no integer in ` S ` . (Contributed
647810
+ by SN, 20-Aug-2024.) $)
647811
+ flt4lem $p |- ( ph -> { y e. S | ps } = (/) ) $=
647812
+ ( vz c0 wn wa cr crab wceq wne df-ne cle wbr wral wrex cuz cfv wss ssrab2
647813
+ sstrid uzwo sylan wcel elrab breq2 notbid elrabd clt uzssre sstrdi adantr
647814
+ cv sseldd sselda adantrr ltnled rspcedvdw sylan2b ralrimiva rexnal ralbii
647815
+ mpbid ralnex bitri sylib pm2.21dd sylan2br pm2.18da ) ABFHUAZQUBZWCRAWBQU
647816
+ CZWCWBQUDAWDSEVEZPVEZUEUFZPWBUGZEWBUHZWCAWBIUIUJZUKWDWIAWBHWJBFHULLUMWBEP
647817
+ IUNUOAWIRZWDAWGRZPWBUHZEWBUGZWKAWMEWBWEWBUPAWEHUPZCSZWMBCFWEHJUQAWPSZWLWE
647818
+ GUEUFZRZPGWBWFGUBWGWRWFGWEUEURUSWQBDFGHKMNUTWQGWEVAUFWSOWQGWEWQHTGAHTUKWP
647819
+ AHWJTLIVBVCZVDMVFAWOWETUPCAHTWEWTVGVHVIVOVJVKVLWNWHRZEWBUGWKWMXAEWBWGPWBV
647820
+ MVNWHEWBVPVQVRVDVSVTWA $.
647821
+ $}
647822
+
647823
+ ${
647824
+ flt4lem2.a $e |- ( ph -> A e. NN ) $.
647825
+ flt4lem2.b $e |- ( ph -> B e. NN ) $.
647826
+ flt4lem2.c $e |- ( ph -> C e. NN ) $.
647827
+ flt4lem2.1 $e |- ( ph -> A < B ) $.
647828
+ $( ~ pythagtrip in deduction form with the additional hypothesis ` A < B `
647829
+ to separate ` { A , B } = { x , y } ` into ` A = x /\ B = y ` . This
647830
+ hypothesis can be assumed without loss of generality because of ~ fltne
647831
+ and the commutative property of addition. (Contributed by SN,
647832
+ 20-Aug-2024.) $)
647833
+ flt4lem2 $p |- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) <->
647834
+ E. n e. NN E. m e. NN E. k e. NN (
647835
+ A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\
647836
+ B = ( k x. ( 2 x. ( m x. n ) ) ) /\
647837
+ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) $=
647838
+ ( c2 cexp co wceq cmul wa cn wrex wcel cpr cv cmin w3a pythagtrip syl3anc
647839
+ caddc wb pm5.21ndd anbi1d df-3an bicomi syl6bb rexbidva 2rexbidva bitrd )
647840
+ ABLMNCLMNUGNDLMNOZBCUAEUBZFUBZLMNZGUBZLMNZUCNPNZURLUSVAPNPNPNZUAOZDURUTVB
647841
+ UGNPNOZQZERSZFRSGRSZBVCOZCVDOZVFUDZERSZFRSGRSABRTCRTDRTUQVIUHHIJBCDEFGUEU
647842
+ FAVHVMGFRRAVARTUSRTQQZVGVLERVNURRTQZVGVJVKQZVFQZVLVOVEVPVFVO?VEVP???UIUJV
647843
+ LVQVJVKVFUKULUMUNUOUP $.
647844
+ $}
647845
+
647846
+ ${
647847
+ flt4lem3.a $e |- ( ph -> A e. NN ) $.
647848
+ flt4lem3.b $e |- ( ph -> B e. NN ) $.
647849
+ flt4lem3.c $e |- ( ph -> C e. NN ) $.
647850
+ flt4lem3.1 $e |- ( ph -> A < B ) $.
647851
+ flt4lem3.2 $e |- ( ph -> ( A gcd B ) = 1 ) $.
647852
+ $( Add a coprime requirement, converting ~ pythagtrip into a
647853
+ characterization of primitive Pythagorean triples. (Contributed by SN,
647854
+ 20-Aug-2024.) $)
647855
+ flt4lem3 $p |- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) <->
647856
+ E. n e. NN E. m e. NN (
647857
+ A = ( ( m ^ 2 ) - ( n ^ 2 ) /\
647858
+ B = ( 2 x. ( m x. n ) ) /\
647859
+ C = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) $=
647860
+ ? $.
647861
+ $}
647862
+
647672
647863
${
647673
647864
fltne.a $e |- ( ph -> A e. NN ) $.
647674
647865
fltne.b $e |- ( ph -> B e. NN ) $.
@@ -690622,10 +690813,6 @@ not even needed (it can be any class). (Contributed by Glauco
690622
690813
23-Oct-2021.) $)
690623
690814
mnfnre2 $p |- -. -oo e. RR $=
690624
690815
( cmnf cr mnfnre neli ) ABCD $.
690625
- $( An upper set of integers is a subset of the Reals. (Contributed by Glauco
690626
- Siliprandi, 23-Oct-2021.) $)
690627
- uzssre $p |- ( ZZ>= ` M ) C_ RR $=
690628
- ( cuz cfv cz cr uzssz zssre sstri ) ABCDEAFGH $.
690629
690816
$( The integers are a subset of the extended reals. (Contributed by Glauco
690630
690817
Siliprandi, 23-Oct-2021.) $)
690631
690818
zssxr $p |- ZZ C_ RR* $=
0 commit comments