@@ -643230,6 +643230,23 @@ D Fn ( I ... ( M - 1 ) ) /\
643230
643230
( wcel wrex rspcev syl2anc ) AEFJCBDFKHIBCDEFGLM $.
643231
643231
$}
643232
643232
643233
+ ${
643234
+ $d ch x $. $d th y $. $d ta z $. $d A x y z $. $d B y z $. $d C z $.
643235
+ $d X x $. $d Y x y $. $d Z x y z $.
643236
+ 3rspcedvdw.1 $e |- ( x = A -> ( ps <-> ch ) ) $.
643237
+ 3rspcedvdw.2 $e |- ( y = B -> ( ch <-> th ) ) $.
643238
+ 3rspcedvdw.3 $e |- ( z = C -> ( th <-> ta ) ) $.
643239
+ 3rspcedvdw.a $e |- ( ph -> A e. X ) $.
643240
+ 3rspcedvdw.b $e |- ( ph -> B e. Y ) $.
643241
+ 3rspcedvdw.c $e |- ( ph -> C e. Z ) $.
643242
+ 3rspcedvdw.4 $e |- ( ph -> ta ) $.
643243
+ $( Triple application of ~ rspcedvdw . (Contributed by SN,
643244
+ 20-Aug-2024.) $)
643245
+ 3rspcedvdw $p |- ( ph -> E. x e. X E. y e. Y E. z e. Z ps ) $=
643246
+ ( wrex cv wceq 2rexbidv rexbidv rspcedvdw ) ABHNUBGMUBCHNUBZGMUBFILFUCIUD
643247
+ BCGHMNOUERAUHDHNUBGJMGUCJUDCDHNPUFSADEHKNQTUAUGUGUG $.
643248
+ $}
643249
+
643233
643250
${
643234
643251
$d ph x y z $. $d ch x $. $d th y $. $d ta z $. $d D x y z $.
643235
643252
$d A x y z $. $d B y z $. $d C z $.
@@ -645339,6 +645356,18 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
645339
645356
$( $j usage 'nnmulcom' avoids 'ax-mulcom'; $)
645340
645357
$}
645341
645358
645359
+ ${
645360
+ laddrotrd.a $e |- ( ph -> A e. CC ) $.
645361
+ laddrotrd.b $e |- ( ph -> B e. CC ) $.
645362
+ laddrotrd.c $e |- ( ph -> C e. CC ) $.
645363
+ laddrotrd.1 $e |- ( ph -> ( A + B ) = C ) $.
645364
+ $( Rotate the variables right in an equation with addition on the left,
645365
+ converting it into a subtraction. ~ mvlladdd commuted. (Contributed by
645366
+ SN, 21-Aug-2024.) $)
645367
+ laddrotrd $p |- ( ph -> ( C - A ) = B ) $=
645368
+ ( cmin co mvlladdd eqcomd ) ACDBIJABCDEFHKL $.
645369
+ $}
645370
+
645342
645371
$( Relation between sums and differences. (Contributed by Steven Nguyen,
645343
645372
5-Jan-2023.) $)
645344
645373
addsubeq4com $p |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) ->
@@ -645582,6 +645611,18 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
645582
645611
VMATUJVAVCVMUKULUMVGVOVJVIIVFBCPUNUOUPUQURUS $.
645583
645612
$}
645584
645613
645614
+ ${
645615
+ dvdsexpad.1 $e |- ( ph -> A e. ZZ ) $.
645616
+ dvdsexpad.2 $e |- ( ph -> B e. ZZ ) $.
645617
+ dvdsexpad.3 $e |- ( ph -> N e. NN0 ) $.
645618
+ dvdsexpad.5 $e |- ( ph -> A || B ) $.
645619
+ $( Deduction associated with ~ dvdsexpim . (Contributed by SN,
645620
+ 21-Aug-2024.) $)
645621
+ dvdsexpad $p |- ( ph -> ( A ^ N ) || ( B ^ N ) ) $=
645622
+ ( cdvds wbr cexp co cz wcel cn0 wi dvdsexpim syl3anc mpd ) ABCIJZBDKLCDKL
645623
+ IJZHABMNCMNDONTUAPEFGBCDQRS $.
645624
+ $}
645625
+
645585
645626
$( If ` A ` and ` B ` are relatively prime, then so are ` A ^ N ` and
645586
645627
` B ^ N ` . ~ rppwr extended to nonnegative integers. (Contributed by
645587
645628
Steven Nguyen, 4-Apr-2023.) $)
@@ -645719,7 +645760,7 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
645719
645760
645720
645761
$( ~ dvdssqlem generalized to positive integer exponents. (Contributed by
645721
645762
SN, 20-Aug-2024.) $)
645722
- dvdsexplem $p |- ( ( A e. NN /\ B e. NN /\ N e. NN ) ->
645763
+ dvdsexpnn $p |- ( ( A e. NN /\ B e. NN /\ N e. NN ) ->
645723
645764
( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) $=
645724
645765
( cn wcel w3a cdvds wbr cexp co cz cn0 nnz wa nnrpd 3adant3 adantr nnexpcld
645725
645766
cgcd wceq wi nnnn0 dvdsexpim syl3an crp gcdnncl simpl1 simpl3 nnne0d expgcd
@@ -647782,45 +647823,44 @@ standardize vectors to a length (norm) of one, but such definitions require
647782
647823
( vi cdvds wbr cn co wcel cz cv wa c1 wceq wi wral cgcd coprmgcdb syl2anc
647783
647824
wb mpbird simprl cexp cmin simpr adantr dvdsexpim syl3anc anim12d ancomsd
647784
647825
cn0 imp nnexpcld ad2antrr dvds2sub mpd nncnd expcld caddc eqcomd mvrladdd
647785
- nnzd breqtrd simplr flt0 dvdsexplem jca ex imim1d ralimdva mpbid ) ANUAZB
647786
- OPZWBDOPZUBZWBUCUDZUEZNQUFZBDUGRUCUDZAWCWBCOPZUBZWFUEZNQUFZWHAWMBCUGRUCUD
647787
- ZMABQSZCQSZWMWNUJHIBCNUHUIUKAWLWGNQAWBQSZUBZWEWKWFWRWEWKWRWEUBZWCWJWRWCWD
647788
- ULWSWJWBFUMRZCFUMRZOPZWSWTDFUMRZBFUMRZUNRZXAOWSWTXCOPZWTXDOPZUBZWTXEOPZWR
647789
- WEXHWRWDWCXHWRWDXFWCXGWRWBTSZDTSZFVASZWDXFUEWRWBAWQUOZVLZAXKWQADJVLUPAXLW
647790
- QKUPZWBDFUQURWRXJBTSZXLWCXGUEXNAXPWQABHVLUPXOWBBFUQURUSUTVBWSWTTSZXCTSZXD
647791
- TSZXHXIUEWRXQWEWRWTWRWBFXMXOVCVLUPAXRWQWEAXCADFJKVCVLVDAXSWQWEAXDABFHKVCV
647792
- LVDWTXCXDVEURVFAXEXAUDWQWEAXCXDXAABFABHVGZKVHACFACIVGZKVHAXDXAVIRXCLVJVKV
647793
- DVMWSWQWPFQSZWJXBUJAWQWEVNAWPWQWEIVDAYBWQWEABCDFXTYAADJVGKLVOVDWBCFVPURUK
647794
- VQVRVSVTVFAWODQSWHWIUJHJBDNUHUIWA $.
647795
- $}
647796
-
647797
- ${
647798
- $d ph x z $. $d ps x z $. $d ch y $. $d th y $. $d A y z $.
647799
- $d S x y z $.
647800
- flt4lem.1 $e |- ( y = x -> ( ps <-> ch ) ) $.
647801
- flt4lem.2 $e |- ( y = A -> ( ps <-> th ) ) $.
647802
- flt4lem.3 $e |- ( ph -> S C_ ( ZZ>= ` M ) ) $.
647803
- flt4lem.4 $e |- ( ( ph /\ ( x e. S /\ ch ) ) -> A e. S ) $.
647804
- flt4lem.5 $e |- ( ( ph /\ ( x e. S /\ ch ) ) -> th ) $.
647805
- flt4lem.6 $e |- ( ( ph /\ ( x e. S /\ ch ) ) -> A < x ) $.
647826
+ nnzd breqtrd simplr flt0 dvdsexpnn jca ex imim1d ralimdva mpbid ) ANUAZBO
647827
+ PZWBDOPZUBZWBUCUDZUEZNQUFZBDUGRUCUDZAWCWBCOPZUBZWFUEZNQUFZWHAWMBCUGRUCUDZ
647828
+ MABQSZCQSZWMWNUJHIBCNUHUIUKAWLWGNQAWBQSZUBZWEWKWFWRWEWKWRWEUBZWCWJWRWCWDU
647829
+ LWSWJWBFUMRZCFUMRZOPZWSWTDFUMRZBFUMRZUNRZXAOWSWTXCOPZWTXDOPZUBZWTXEOPZWRW
647830
+ EXHWRWDWCXHWRWDXFWCXGWRWBTSZDTSZFVASZWDXFUEWRWBAWQUOZVLZAXKWQADJVLUPAXLWQ
647831
+ KUPZWBDFUQURWRXJBTSZXLWCXGUEXNAXPWQABHVLUPXOWBBFUQURUSUTVBWSWTTSZXCTSZXDT
647832
+ SZXHXIUEWRXQWEWRWTWRWBFXMXOVCVLUPAXRWQWEAXCADFJKVCVLVDAXSWQWEAXDABFHKVCVL
647833
+ VDWTXCXDVEURVFAXEXAUDWQWEAXCXDXAABFABHVGZKVHACFACIVGZKVHAXDXAVIRXCLVJVKVD
647834
+ VMWSWQWPFQSZWJXBUJAWQWEVNAWPWQWEIVDAYBWQWEABCDFXTYAADJVGKLVOVDWBCFVPURUKV
647835
+ QVRVSVTVFAWODQSWHWIUJHJBDNUHUIWA $.
647836
+ $}
647837
+
647838
+ ${
647839
+ $d ph x z $. $d ps x z $. $d ch y $. $d th y $. $d S x y z $.
647840
+ flt4lem.x $e |- ( y = x -> ( ps <-> ch ) ) $.
647841
+ flt4lem.z $e |- ( y = z -> ( ps <-> th ) ) $.
647842
+ flt4lem.s $e |- ( ph -> S C_ ( ZZ>= ` M ) ) $.
647843
+ flt4lem.1 $e |-
647844
+ ( ( ph /\ ( x e. S /\ ch ) ) -> E. z e. S ( th /\ z < x ) ) $.
647806
647845
$( Infinite descent. The hypotheses say that ` S ` is lower bounded, and
647807
647846
that if ` ps ` holds for an integer in ` S ` , it holds for a smaller
647808
647847
integer in ` S ` . By infinite descent, eventually we cannot go any
647809
647848
smaller, therefore ` ps ` holds for no integer in ` S ` . (Contributed
647810
647849
by SN, 20-Aug-2024.) $)
647811
647850
flt4lem $p |- ( ph -> { y e. S | ps } = (/) ) $=
647812
- ( vz c0 wn wa cr crab wceq wne df-ne cle wbr wral wrex cuz cfv wss ssrab2
647813
- sstrid uzwo sylan wcel elrab breq2 notbid elrabd clt uzssre sstrdi adantr
647814
- cv sseldd sselda adantrr ltnled rspcedvdw sylan2b ralrimiva rexnal ralbii
647815
- mpbid ralnex bitri sylib pm2.21dd sylan2br pm2.18da ) ABFHUAZQUBZWCRAWBQU
647816
- CZWCWBQUDAWDSEVEZPVEZUEUFZPWBUGZEWBUHZWCAWBIUIUJZUKWDWIAWBHWJBFHULLUMWBEP
647817
- IUNUOAWIRZWDAWGRZPWBUHZEWBUGZWKAWMEWBWEWBUPAWEHUPZCSZWMBCFWEHJUQAWPSZWLWE
647818
- GUEUFZRZPGWBWFGUBWGWRWFGWEUEURUSWQBDFGHKMNUTWQGWEVAUFWSOWQGWEWQHTGAHTUKWP
647819
- AHWJTLIVBVCZVDMVFAWOWETUPCAHTWEWTVGVHVIVOVJVKVLWNWHRZEWBUGWKWMXAEWBWGPWBV
647820
- MVNWHEWBVPVQVRVDVSVTWA $.
647851
+ ( c0 wn wa wral wrex wcel cr crab wne df-ne cv cle wbr cuz cfv wss ssrab2
647852
+ wceq sstrid uzwo sylan elrab wb uzssre sstrdi adantr sselda ltnled anbi2d
647853
+ clt rexbidva adantrr sylan2b rexrab sylibr ralrimiva rexnal ralbii ralnex
647854
+ mpbid bitri sylib pm2.21dd sylan2br pm2.18da ) ABFHUAZNUKZVTOAVSNUBZVTVSN
647855
+ UCAWAPEUDZGUDZUEUFZGVSQZEVSRZVTAVSIUGUHZUIWAWFAVSHWGBFHUJLULVSEGIUMUNAWFO
647856
+ ZWAAWDOZGVSRZEVSQZWHAWJEVSAWBVSSZPDWIPZGHRZWJWLAWBHSZCPZWNBCFWBHJUOAWPPDW
647857
+ CWBVCUFZPZGHRZWNMAWOWSWNUPCAWOPZWRWMGHWTWCHSZPZWQWIDXBWCWBWTHTWCAHTUIWOAH
647858
+ WGTLIUQURZUSUTWTWBTSXAAHTWBXCUTUSVAVBVDVEVMVFBDWIGFHKVGVHVIWKWEOZEVSQWHWJ
647859
+ XDEVSWDGVSVJVKWEEVSVLVNVOUSVPVQVR $.
647821
647860
$}
647822
647861
647823
647862
${
647863
+ $d ph k m n $. $d A k m n $. $d B k m n $. $d C k m n $.
647824
647864
flt4lem2.a $e |- ( ph -> A e. NN ) $.
647825
647865
flt4lem2.b $e |- ( ph -> B e. NN ) $.
647826
647866
flt4lem2.c $e |- ( ph -> C e. NN ) $.
@@ -647848,10 +647888,10 @@ standardize vectors to a length (norm) of one, but such definitions require
647848
647888
flt4lem3.b $e |- ( ph -> B e. NN ) $.
647849
647889
flt4lem3.c $e |- ( ph -> C e. NN ) $.
647850
647890
flt4lem3.1 $e |- ( ph -> A < B ) $.
647851
- flt4lem3.2 $e |- ( ph -> ( A gcd B ) = 1 ) $.
647852
- $( Add a coprime requirement, converting ~ pythagtrip into a
647853
- characterization of primitive Pythagorean triples. (Contributed by SN,
647854
- 20-Aug-2024.) $)
647891
+ flt4lem3.2 $e |- ( ph -> ( A gcd C ) = 1 ) $.
647892
+ $( Add a coprime requirement (between ` A , C ` to correspond with
647893
+ ~ flt4lem6 ), converting ~ pythagtrip into a characterization of
647894
+ primitive Pythagorean triples. (Contributed by SN, 20-Aug-2024.) $)
647855
647895
flt4lem3 $p |- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) <->
647856
647896
E. n e. NN E. m e. NN (
647857
647897
A = ( ( m ^ 2 ) - ( n ^ 2 ) /\
@@ -647860,6 +647900,23 @@ standardize vectors to a length (norm) of one, but such definitions require
647860
647900
? $.
647861
647901
$}
647862
647902
647903
+ ${
647904
+ flt4lem4.a $e |- ( ph -> A e. NN ) $.
647905
+ flt4lem4.b $e |- ( ph -> B e. NN ) $.
647906
+ flt4lem4.c $e |- ( ph -> C e. NN ) $.
647907
+ flt4lem4.1 $e |- ( ph -> A < B ) $.
647908
+ flt4lem4.2 $e |- ( ph -> ( A gcd C ) = 1 ) $.
647909
+ $( In the characterization of primitive Pythagorean triples, ` m , n ` are
647910
+ coprime (otherwise ` A , C ` would not be coprime). (Contributed by SN,
647911
+ 20-Aug-2024.) $)
647912
+ flt4lem4 $p |- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) <->
647913
+ E. n e. NN E. m e. NN ( ( n gcd m ) = 1 /\ (
647914
+ A = ( ( m ^ 2 ) - ( n ^ 2 ) /\
647915
+ B = ( 2 x. ( m x. n ) ) /\
647916
+ C = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) $=
647917
+ ? $.
647918
+ $}
647919
+
647863
647920
${
647864
647921
fltne.a $e |- ( ph -> A e. NN ) $.
647865
647922
fltne.b $e |- ( ph -> B e. NN ) $.
@@ -647883,6 +647940,123 @@ standardize vectors to a length (norm) of one, but such definitions require
647883
647940
$.
647884
647941
$}
647885
647942
647943
+ ${
647944
+ flt4lem5.a $e |- ( ph -> A e. NN ) $.
647945
+ flt4lem5.b $e |- ( ph -> B e. NN ) $.
647946
+ flt4lem5.c $e |- ( ph -> C e. NN ) $.
647947
+ flt4lem5.2 $e |- ( ph -> ( A gcd C ) = 1 ) $.
647948
+ flt4lem5.3 $e |- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) $.
647949
+ $( By ~ fltne , we can assume ` A < B ` without loss of generality,
647950
+ eliminating the hypothesis from ~ flt4lem2 . (Contributed by SN,
647951
+ 20-Aug-2024.) $)
647952
+ flt4lem5 $p |- ( ph -> E. n e. NN E. m e. NN ( ( n gcd m ) = 1 /\ (
647953
+ A = ( ( m ^ 2 ) - ( n ^ 2 ) /\
647954
+ B = ( 2 x. ( m x. n ) ) /\
647955
+ C = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) $=
647956
+ ? $.
647957
+ $}
647958
+
647959
+ ${
647960
+ flt4lem6.a $e |- ( ph -> A e. NN ) $.
647961
+ flt4lem6.b $e |- ( ph -> B e. NN ) $.
647962
+ flt4lem6.c $e |- ( ph -> C e. NN ) $.
647963
+ flt4lem6.2 $e |- ( ph -> ( A gcd C ) = 1 ) $.
647964
+ flt4lem6.3 $e |- ( ph -> ( ( A ^ 4 ) + ( B ^ 2 ) ) = ( C ^ 4 ) ) $.
647965
+ $( Given a solution to ` A ^ 4 + B ^ 2 = C ^ 4 ` , provide a smaller
647966
+ solution. This satisfies the infinite descent condition. (Contributed
647967
+ by SN, 20-Aug-2024.) $)
647968
+ flt4lem6 $p |- ( ph -> E. n e. NN E. m e. NN (
647969
+ ( n gcd m ) = 1 /\
647970
+ m < C /\
647971
+ ( ( n ^ 4 ) + ( ( A x. C ) ^ 2 ) ) = ( m ^ 4 ) ) ) $=
647972
+ ? $.
647973
+ $}
647974
+
647975
+ ${
647976
+ $d ph a c $. $d ph b $. $d A a $. $d A c $. $d B a $. $d B b c $.
647977
+ $d C c $. $d a b d e f $. $d c d e f $. $d e g h $. $d e f x z $.
647978
+ $d ph d g h x z $.
647979
+ flt4g.a $e |- ( ph -> A e. NN ) $.
647980
+ flt4g.b $e |- ( ph -> B e. NN ) $.
647981
+ flt4g.c $e |- ( ph -> C e. NN ) $.
647982
+ $( Fermat's last theorem for the exponent four, generalized. This is
647983
+ equivalent to Fermat's right triangle theorem. (Contributed by SN,
647984
+ 20-Aug-2024.) $)
647985
+ flt4g $p |- ( ph -> ( ( A ^ 4 ) + ( B ^ 2 ) ) =/= ( C ^ 4 ) ) $=
647986
+ ( vd ve c4 cexp co c2 caddc wceq cn wrex wcel wa nncnd vc va vb vf vx wne
647987
+ vz vg vh cv wn oveq1 eqeq2d necon3bbid crab c0 wss oveq1d eqeq1d ad2antrr
647988
+ wral simpr rspcedvdw ex ss2rabdv oveq2d ad3antrrr reximdva cgcd weq oveq2
647989
+ anbi12d 2rexbidv cuz cfv nnuz eqimssi a1i clt wbr rexbidv cbvrexvw anbi2d
647990
+ c1 rexbii cmul w3a simprll simprlr simplr simprrl simprrr flt4lem6 rexcom
647991
+ bitri anbi1d simp-5r nnmulcld simpr1 simpr3 simpr2 jca31 r19.40 reximi id
647992
+ rexlimivw anim2i 3syl syl6 syl5bi expr rexlimdvva impr flt4lem cz simplrl
647993
+ mpd cdiv simplrr nnzd divgcdnnr syl2anc divgcdnn cdvds cmin cn0 dvdsexpad
647994
+ nnexpcld 2t2e4 oveq2i 2nn0 expmuld syl5eqr nnsqcld wb nnne0d sqdivd rabn0
647995
+ 3eqtr4d sseq0 gcdnncl 4nn0 gcddvds simprd simpld dvds2subd simprl 3brtr3d
647996
+ simprr laddrotrd dvdssqlem mpbird nndivdvds mpbid cc0 divgcdcoprm0 biimpd
647997
+ syl3anc eqeq12d fltdiv 3rspcedvdw rexlimdvaa 3imtr4g necon4d rabeq0 sylib
647998
+ jca rspcdva ) ABJKLZCMKLZNLZUAUJZJKLZOZUKZUVKDJKLZUFUAPDUVLDOZUVNUVKUVPUV
647999
+ QUVMUVPUVKUVLDJKULUMUNAUVNUAPUOZUPOZUVOUAPVAAUVRUBUJZJKLZUVJNLZUVMOZUBPQZ
648000
+ UAPUOZUQUWEUPOZUVSAUVNUWDUAPAUVLPRZSZUVNUWDUWHUVNSUWCUVNUBBPUVTBOZUWBUVKU
648001
+ VMUWIUWAUVIUVJNUVTBJKULURUSABPRUWGUVNEUTUWHUVNVBVCVDVEAUWEUWAUCUJZMKLZNLZ
648002
+ UVMOZUCPQZUBPQZUAPUOZUQUWPUPOZUWFAUWDUWOUAPUWHUWCUWNUBPUWHUVTPRZSZUWCUWNU
648003
+ WSUWCSUWMUWCUCCPUWJCOZUWLUWBUVMUWTUWKUVJUWANUWJCMKULVFUSACPRUWGUWRUWCFVGU
648004
+ WSUWCVBVCVDVHVEAHUJZUDUJZVILZWDOZUXAJKLZIUJZMKLZNLZUXBJKLZOZSZIPQHPQZUDPU
648005
+ OZUPOUWQAUXLUXAUEUJZVILZWDOZUXHUXNJKLZOZSZIPQZHPQZUXAUGUJZVILZWDOZUXHUYBJ
648006
+ KLZOZSZIPQZHPQZUEUDUGPWDUDUEVJZUXKUXSHIPPUYJUXDUXPUXJUXRUYJUXCUXOWDUXBUXN
648007
+ UXAVIVKUSUYJUXIUXQUXHUXBUXNJKULUMVLVMUDUGVJZUXKUYGHIPPUYKUXDUYDUXJUYFUYKU
648008
+ XCUYCWDUXBUYBUXAVIVKUSUYKUXIUYEUXHUXBUYBJKULUMVLVMPWDVNVOZUQAPUYLVPVQVRAU
648009
+ XNPRZUYAUYIUYBUXNVSVTZSZUGPQZUYAUHUJZUXNVILZWDOZUYQJKLZUIUJZMKLZNLZUXQOZS
648010
+ ZUIPQZUHPQZAUYMSZUYPUYAUYSUYTUXGNLZUXQOZSZIPQZUHPQVUGUXTVULHUHPHUHVJZUXSV
648011
+ UKIPVUMUXPUYSUXRVUJVUMUXOUYRWDUXAUYQUXNVIULUSVUMUXHVUIUXQVUMUXEUYTUXGNUXA
648012
+ UYQJKULURUSVLWAWBVULVUFUHPVUKVUEIUIPIUIVJZVUJVUDUYSVUNVUIVUCUXQVUNUXGVUBU
648013
+ YTNUXFVUAMKULVFUSWCWBWEWOVUHVUEUYPUHUIPPVUHUYQPRZVUAPRZSZVUEUYPVUHVUQVUES
648014
+ ZSZUYDUYNUXEUYQUXNWFLZMKLZNLZUYEOZWGZUGPQHPQZUYPVUSUYQVUAUXNUGHVUHVUOVUPV
648015
+ UEWHZVUHVUOVUPVUEWIAUYMVURWJVUHVUQUYSVUDWKVUHVUQUYSVUDWLWMVVEVVDHPQZUGPQV
648016
+ USUYPVVDHUGPPWNVUSVVGUYOUGPVUSUYBPRZSZVVGUYGUYNSZIPQZHPQZUYOVVIVVDVVKHPVV
648017
+ IUXAPRZSZVVDVVKVVNVVDSZVVJUYDVVCSZUYNSIVUTPUXFVUTOZUYGVVPUYNVVQUYFVVCUYDV
648018
+ VQUXHVVBUYEVVQUXGVVAUXENUXFVUTMKULVFUSWCWPVVOUYQUXNVUSVUOVVHVVMVVDVVFVGAU
648019
+ YMVURVVHVVMVVDWQWRVVOUYDVVCUYNVVNUYDUYNVVCWSVVNUYDUYNVVCWTVVNUYDUYNVVCXAX
648020
+ BVCVDVHVVLUYHUYNIPQZSZHPQUYIVVRHPQZSUYOVVKVVSHPUYGUYNIPXCXDUYHVVRHPXCVVTU
648021
+ YNUYIVVRUYNHPUYNUYNIPUYNXEXFXFXGXHXIVHXJXQXKXLXJXMXNAUWPUPUXMUPAUWOUAPQUX
648022
+ LUDPQZUWPUPUFUXMUPUFAUWNVWAUAUBPPAUWGUWRSSZUWMVWAUCPVWBUWJPRZUWMSZSZUXKUX
648023
+ AUVLUVTUVLVILZXRLZVILZWDOZUXHVWGJKLZOZSUVTVWFXRLZVWGVILZWDOZVWLJKLZUXGNLZ
648024
+ VWJOZSVWNVWOUWJVWFMKLZXRLZMKLZNLZVWJOZSUDHIVWGVWLVWSPPPUXBVWGOZUXDVWIUXJV
648025
+ WKVXCUXCVWHWDUXBVWGUXAVIVKUSVXCUXIVWJUXHUXBVWGJKULUMVLUXAVWLOZVWIVWNVWKVW
648026
+ QVXDVWHVWMWDUXAVWLVWGVIULUSVXDUXHVWPVWJVXDUXEVWOUXGNUXAVWLJKULURUSVLUXFVW
648027
+ SOZVWQVXBVWNVXEVWPVXAVWJVXEUXGVWTVWONUXFVWSMKULVFUSWCVWEUWGUVTXORZVWGPRAU
648028
+ WGUWRVWDXPZVWEUVTAUWGUWRVWDXSZXTZUVLUVTYAYBZVWEUWRUVLXORZVWLPRVXHVWEUVLVX
648029
+ GXTZUVTUVLYCYBZVWEVWRUWJYDVTZVWSPRZVWEVXNVWRMKLZUWKYDVTZVWEVWFJKLZUVMUWAY
648030
+ ELVXPUWKYDVWEVXRUVMUWAVWEVXRVWEVWFJVWEUWRUWGVWFPRVXHVXGUVTUVLUUAYBZJYFRVW
648031
+ EUUBVRZYHXTVWEVWFUVLJVWEVWFVXSXTZVXLVXTVWEVWFUVTYDVTZVWFUVLYDVTZVWEVXFVXK
648032
+ VYBVYCSVXIVXLUVTUVLUUCYBZUUDYGVWEVWFUVTJVYAVXIVXTVWEVYBVYCVYDUUEYGVWEUVMV
648033
+ WEUVLJVXGVXTYHZXTVWEUWAVWEUVTJVXHVXTYHZXTUUFVWEVXRVWFMMWFLZKLVXPVYGJVWFKY
648034
+ IYJVWEVWFMMVWEVWFVXSTZMYFRZVWEYKVRZVYJYLYMVWEUWAUWKUVMVWEUWAVYFTVWEUWKVWE
648035
+ UWJVWBVWCUWMUUGZYNTVWEUVMVYETVWBVWCUWMUUIUUJUUHVWEVWRPRZVWCVXNVXQYOVWEVWF
648036
+ VXSYNZVYKVWRUWJUUKYBUULVWEVWCVYLVXNVXOYOVYKVYMUWJVWRUUMYBUUNVWEVWNVXBVWEV
648037
+ XFVXKUVLUUOUFVWNVXIVXLVWEUVLVXGYPUVTUVLUUPUURVWEVWLMKLZMKLZVWTNLZVWGMKLZM
648038
+ KLZVXAVWJVWEUVTMKLZVWRXRLZMKLZVWTNLUVLMKLZVWRXRLZMKLVYPVYRVWEVYSUWJWUBVWR
648039
+ MVWEVWRVYMTVWEVWRVYMYPVWEVYSVWEUVTVXHYNTVWEUWJVYKTVWEWUBVWEUVLVXGYNTVYJVW
648040
+ BVWCUWMVYSMKLZUWKNLZWUBMKLZOZVWBVWCSZUWMWUGWUHUWLWUEUVMWUFWUHUWAWUDUWKNWU
648041
+ HUWAUVTVYGKLWUDVYGJUVTKYIYJWUHUVTMMWUHUVTAUWGUWRVWCXSTVYIWUHYKVRZWUIYLYMU
648042
+ RWUHUVMUVLVYGKLWUFVYGJUVLKYIYJWUHUVLMMWUHUVLAUWGUWRVWCXPTWUIWUIYLYMUUSUUQ
648043
+ XMUUTVWEVYOWUAVWTNVWEVYNVYTMKVWEUVTVWFVWEUVTVXHTVYHVWEVWFVXSYPZYQURURVWEV
648044
+ YQWUCMKVWEUVLVWFVWEUVLVXGTVYHWUJYQURYSVWEVWOVYOVWTNVWEVWOVWLVYGKLVYOVYGJV
648045
+ WLKYIYJVWEVWLMMVWEVWLVXMTVYJVYJYLYMURVWEVWJVWGVYGKLVYRVYGJVWGKYIYJVWEVWGM
648046
+ MVWEVWGVXJTVYJVYJYLYMYSUVGUVAUVBXLUWOUAPYRUXLUDPYRUVCUVDXQUWEUWPYTYBUVRUW
648047
+ EYTYBUVNUAPUVEUVFGUVH $.
648048
+ $}
648049
+
648050
+ $(
648051
+ flt4.a @e |- ( ph -> A e. NN ) @.
648052
+ flt4.b @e |- ( ph -> B e. NN ) @.
648053
+ flt4.c @e |- ( ph -> C e. NN ) @.
648054
+ @( Fermat's last theorem for the exponent four. (Contributed by ??,
648055
+ ??-???-????.) @)
648056
+ flt4 @p |- ( ph -> ( ( A ^ 4 ) + ( B ^ 4 ) ) =/= ( C ^ 4 ) ) @=
648057
+ ? @.
648058
+ $)
648059
+
647886
648060
${
647887
648061
fltltc.a $e |- ( ph -> A e. NN ) $.
647888
648062
fltltc.b $e |- ( ph -> B e. NN ) $.
0 commit comments