@@ -235,6 +235,7 @@ enum llm_arch {
235235 LLM_ARCH_GRANITE,
236236 LLM_ARCH_GRANITE_MOE,
237237 LLM_ARCH_COHERE2,
238+ LLM_ARCH_HUNYUAN_MOE,
238239 LLM_ARCH_UNKNOWN,
239240};
240241
@@ -291,6 +292,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
291292 { LLM_ARCH_GRANITE, "granite" },
292293 { LLM_ARCH_GRANITE_MOE, "granitemoe" },
293294 { LLM_ARCH_COHERE2, "cohere2" },
295+ { LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
294296 { LLM_ARCH_UNKNOWN, "(unknown)" },
295297};
296298
@@ -1595,6 +1597,29 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
15951597 { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
15961598 },
15971599 },
1600+ {
1601+ LLM_ARCH_HUNYUAN_MOE,
1602+ {
1603+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
1604+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
1605+ { LLM_TENSOR_OUTPUT, "output" },
1606+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
1607+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
1608+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
1609+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
1610+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
1611+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
1612+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
1613+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
1614+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
1615+ { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
1616+ { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
1617+ { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
1618+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
1619+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
1620+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
1621+ },
1622+ },
15981623 {
15991624 LLM_ARCH_UNKNOWN,
16001625 {
@@ -1638,6 +1663,7 @@ enum llm_chat_template {
16381663 LLM_CHAT_TEMPLATE_MEGREZ,
16391664 LLM_CHAT_TEMPLATE_LLAMA4,
16401665 LLM_CHAT_TEMPLATE_BITNET,
1666+ LLM_CHAT_TEMPLATE_HUNYUAN_MOE,
16411667 LLM_CHAT_TEMPLATE_UNKNOWN,
16421668};
16431669
@@ -1675,6 +1701,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
16751701 { "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
16761702 { "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
16771703 { "llama4", LLM_CHAT_TEMPLATE_LLAMA4 },
1704+ { "hunyuan-moe", LLM_CHAT_TEMPLATE_HUNYUAN_MOE },
16781705 { "bitnet", LLM_CHAT_TEMPLATE_BITNET },
16791706};
16801707
@@ -2570,6 +2597,7 @@ enum e_model {
25702597 MODEL_27B,
25712598 MODEL_17B_16E,
25722599 MODEL_17B_128E,
2600+ MODEL_80B_A13B,
25732601};
25742602
25752603static const size_t kiB = 1024;
@@ -5203,6 +5231,7 @@ static const char * llama_model_type_name(e_model type) {
52035231 case MODEL_27B: return "27B";
52045232 case MODEL_17B_16E: return "17Bx16E (Scout)";
52055233 case MODEL_17B_128E: return "17Bx128E (Maverick)";
5234+ case MODEL_80B_A13B: return "80B.A13B";
52065235 default: return "?B";
52075236 }
52085237}
@@ -6037,6 +6066,17 @@ static void llm_load_hparams(
60376066 default: model.type = e_model::MODEL_UNKNOWN;
60386067 }
60396068 } break;
6069+ case LLM_ARCH_HUNYUAN_MOE:
6070+ {
6071+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
6072+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
6073+ ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
6074+
6075+ switch (hparams.n_layer) {
6076+ case 32: model.type = e_model::MODEL_80B_A13B; break;
6077+ default: model.type = e_model::MODEL_UNKNOWN;
6078+ }
6079+ } break;
60406080 default: (void)0;
60416081 }
60426082
@@ -6306,6 +6346,10 @@ static void llm_load_vocab(
63066346 tokenizer_pre == "seed-coder") {
63076347 vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SEED_CODER;
63086348 vocab.tokenizer_clean_spaces = false;
6349+ } else if (
6350+ tokenizer_pre == "hunyuan") {
6351+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_HUNYUAN;
6352+ vocab.tokenizer_clean_spaces = false;
63096353 } else {
63106354 throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
63116355 }
@@ -9164,6 +9208,47 @@ static bool llm_load_tensors(
91649208 layer.ffn_post_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
91659209 }
91669210 } break;
9211+ case LLM_ARCH_HUNYUAN_MOE:
9212+ {
9213+ model.tok_embd = create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
9214+
9215+ // output
9216+ model.output_norm = create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
9217+ model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
9218+
9219+ // if output is NULL, init from the input tok embed
9220+ if (model.output == NULL) {
9221+ model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
9222+ }
9223+
9224+ for (int i = 0; i < n_layer; ++i) {
9225+ ggml_context * ctx_layer = ctx_for_layer(i);
9226+ ggml_context * ctx_split = ctx_for_layer_split(i);
9227+
9228+ auto & layer = model.layers[i];
9229+
9230+ layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
9231+
9232+ layer.wq = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
9233+ layer.wk = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
9234+ layer.wv = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
9235+ layer.wo = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
9236+
9237+ layer.attn_k_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
9238+ layer.attn_q_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
9239+
9240+ layer.ffn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
9241+
9242+ layer.ffn_gate_inp = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
9243+ layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
9244+ layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
9245+ layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
9246+
9247+ layer.ffn_gate_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
9248+ layer.ffn_up_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
9249+ layer.ffn_down_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
9250+ }
9251+ } break;
91679252 default:
91689253 throw std::runtime_error("unknown architecture");
91699254 }
@@ -16862,6 +16947,158 @@ struct llm_build_context {
1686216947
1686316948 return gf;
1686416949 }
16950+
16951+ struct ggml_cgraph * build_hunyuan_moe() {
16952+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
16953+
16954+ const int64_t n_embd_head = hparams.n_embd_head_v;
16955+
16956+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
16957+ GGML_ASSERT(n_embd_head == hparams.n_rot);
16958+
16959+ ggml_tensor * cur;
16960+ ggml_tensor * inpL;
16961+
16962+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
16963+
16964+ // inp_pos - contains the positions
16965+ ggml_tensor * inp_pos = build_inp_pos();
16966+
16967+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
16968+
16969+ const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
16970+
16971+ ggml_tensor * inp_out_ids = build_inp_out_ids();
16972+
16973+ for (int il = 0; il < n_layer; ++il) {
16974+ ggml_tensor * inpSA = inpL;
16975+
16976+ // norm
16977+ cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il);
16978+ cb(cur, "attn_norm", il);
16979+
16980+ // self-attention
16981+ {
16982+ // rope freq factors for llama3; may return nullptr for llama2 and other models
16983+ struct ggml_tensor * rope_factors = build_rope_factors(il);
16984+
16985+ // compute Q and K and RoPE them
16986+ ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
16987+ cb(Qcur, "Qcur", il);
16988+ if (model.layers[il].bq) {
16989+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
16990+ cb(Qcur, "Qcur", il);
16991+ }
16992+
16993+ ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
16994+ cb(Kcur, "Kcur", il);
16995+ if (model.layers[il].bk) {
16996+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
16997+ cb(Kcur, "Kcur", il);
16998+ }
16999+
17000+ ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
17001+ cb(Vcur, "Vcur", il);
17002+ if (model.layers[il].bv) {
17003+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
17004+ cb(Vcur, "Vcur", il);
17005+ }
17006+
17007+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
17008+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
17009+
17010+ Qcur = ggml_rope_ext(
17011+ ctx0, Qcur, inp_pos, rope_factors,
17012+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
17013+ ext_factor, attn_factor, beta_fast, beta_slow
17014+ );
17015+
17016+ cb(Qcur, "Qcur", il);
17017+ cb(Kcur, "Kcur", il);
17018+ cb(Vcur, "Vcur", il);
17019+
17020+ Kcur = ggml_rope_ext(
17021+ ctx0, Kcur, inp_pos, rope_factors,
17022+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
17023+ ext_factor, attn_factor, beta_fast, beta_slow
17024+ );
17025+
17026+ Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, nullptr, LLM_NORM_RMS, cb, il);
17027+ cb(Kcur, "Kcur_norm", il);
17028+
17029+ Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, nullptr, LLM_NORM_RMS, cb, il);
17030+ cb(Qcur, "Qcur_norm", il);
17031+
17032+ cur = llm_build_kv(ctx0, lctx, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
17033+ cb(cur, "attn_out", il);
17034+ }
17035+
17036+ if (il == n_layer - 1 && inp_out_ids) {
17037+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
17038+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
17039+ }
17040+
17041+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
17042+ cb(ffn_inp, "ffn_inp", il);
17043+
17044+ cur = llm_build_norm(ctx0,ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il);
17045+ cb(cur, "ffn_norm", il);
17046+
17047+ // feed-forward network (non-MoE)
17048+ ggml_tensor * cur_mlp = llm_build_ffn(ctx0, lctx, cur,
17049+ model.layers[il].ffn_up_shexp, NULL, NULL,
17050+ model.layers[il].ffn_gate_shexp, NULL, NULL,
17051+ model.layers[il].ffn_down_shexp, NULL, NULL,
17052+ NULL,
17053+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
17054+ cb(cur_mlp, "ffn_mlp", il);
17055+
17056+ // MoE branch
17057+ ggml_tensor * cur_moe = llm_build_moe_ffn(ctx0, lctx, cur,
17058+ model.layers[il].ffn_gate_inp,
17059+ model.layers[il].ffn_up_exps,
17060+ model.layers[il].ffn_gate_exps,
17061+ model.layers[il].ffn_down_exps,
17062+ nullptr,
17063+ n_expert, n_expert_used,
17064+ LLM_FFN_SILU,
17065+ true, // norm_topk_prob
17066+ false,
17067+ 0.0,
17068+ LLM_EXPERT_GATING_FUNC_SOFTMAX,
17069+ cb,
17070+ il);
17071+ cb(cur_moe, "ffn_moe_out", il);
17072+
17073+ ggml_tensor * ffn_out = ggml_add(ctx0, cur_moe, cur_mlp);
17074+ cb(ffn_out, "ffn_out", il);
17075+
17076+ cur = ggml_add(ctx0, ffn_out, ffn_inp);
17077+
17078+ cur = lctx.cvec.apply_to(ctx0, cur, il);
17079+ cb(cur, "l_out", il);
17080+
17081+ // input for next layer
17082+ inpL = cur;
17083+ }
17084+
17085+ cur = inpL;
17086+
17087+ cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
17088+
17089+ cb(cur, "result_norm", -1);
17090+ //res->t_embd = cur;
17091+
17092+ // lm_head
17093+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
17094+
17095+ cb(cur, "result_output", -1);
17096+ //res->t_logits = cur;
17097+
17098+ ggml_build_forward_expand(gf, cur);
17099+
17100+ return gf;
17101+ }
1686517102};
1686617103
1686717104static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -17157,6 +17394,10 @@ static struct ggml_cgraph * llama_build_graph(
1715717394 {
1715817395 result = llm.build_jais();
1715917396 } break;
17397+ case LLM_ARCH_HUNYUAN_MOE:
17398+ {
17399+ result = llm.build_hunyuan_moe();
17400+ } break;
1716017401 default:
1716117402 GGML_ABORT("fatal error");
1716217403 }
@@ -20929,6 +21170,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
2092921170 case LLM_ARCH_OPENELM:
2093021171 case LLM_ARCH_GPTNEOX:
2093121172 case LLM_ARCH_CODESHELL:
21173+ case LLM_ARCH_HUNYUAN_MOE:
2093221174 return LLAMA_ROPE_TYPE_NEOX;
2093321175
2093421176 // all model arches should be listed explicitly here
@@ -22742,6 +22984,8 @@ static llm_chat_template llama_chat_detect_template(const std::string & tmpl) {
2274222984 return LLM_CHAT_TEMPLATE_MEGREZ;
2274322985 } else if (tmpl_contains("<|header_start|>") && tmpl_contains("<|header_end|>")) {
2274422986 return LLM_CHAT_TEMPLATE_LLAMA4;
22987+ } else if (tmpl_contains("<|startoftext|>") && tmpl_contains("<|extra_4|>")) {
22988+ return LLM_CHAT_TEMPLATE_HUNYUAN_MOE;
2274522989 }
2274622990 return LLM_CHAT_TEMPLATE_UNKNOWN;
2274722991}
@@ -23160,6 +23404,18 @@ static int32_t llama_chat_apply_template_internal(
2316023404 ss << message->content;
2316123405 }
2316223406 }
23407+ } else if (tmpl == LLM_CHAT_TEMPLATE_HUNYUAN_MOE) {
23408+ // tencent/Hunyuan-A13B-Instruct
23409+ for (auto message : chat) {
23410+ std::string role(message->role);
23411+ if (role == "system") {
23412+ ss << "<|startoftext|>" << message->content << "<|extra_4|>";
23413+ } else if (role == "assistant") {
23414+ ss << "<|startoftext|>" << message->content << "<|eos|>";
23415+ } else {
23416+ ss << "<|startoftext|>" << message->content << "<|extra_0|>";
23417+ }
23418+ }
2316323419 } else {
2316423420 // template not supported
2316523421 return -1;
0 commit comments