-
Notifications
You must be signed in to change notification settings - Fork 154
Description
Prerequisites
- I am running the latest code. Mention the version if possible as well.
- I carefully followed the README.md.
- I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
- I reviewed the Discussions, and have a new and useful enhancement to share.
Feature Description
I learned from ktransformers-Intel-AMX that amx instruction can further improve inference speed for MoE models.
Is there any plan to support amx in ik_llama? Thanks!
Motivation
Ktransformer kernel can achieve 21 TFLOPS of BF16 throughput and 35 TOPS of Int8 throughput on Xeon4 CPUs — about 4× faster than PyTorch’s general AMX kernel. For DeepSeek-V3, pairing a Xeon4 CPU with a single RTX 4090 GPU achieves 418 tokens/s end-to-end throughput, close to the performance of multi-machine, multi-GPU setups. KTransformers’ AMX kernel is the first AMX kernel specifically designed for MoE inference scenarios, significantly lowering the hardware barrier for large model deployment and enabling more developers to enjoy GPU cluster level inference experiences at lower cost.
Possible Implementation
No response