Skip to content

Feature Request: Port --reasoning-budget from main llamacpp (llamaserver)Β #600

@Panchovix

Description

@Panchovix

Prerequisites

  • I am running the latest code. Mention the version if possible as well.
  • I carefully followed the README.md.
  • I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
  • I reviewed the Discussions, and have a new and useful enhancement to share.

Feature Description

Hello, thanks for the great work!

I'm wondering if it's possible to port the --reasoning-budget flag, from llamacpp into ikllamacpp.

llama-server main help outputs in general:

./llama-server --help
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 7 CUDA devices:
  Device 0: NVIDIA GeForce RTX 5090, compute capability 12.0, VMM: yes
  Device 1: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
  Device 2: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
  Device 3: NVIDIA GeForce RTX 5090, compute capability 12.0, VMM: yes
  Device 4: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
  Device 5: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
  Device 6: NVIDIA RTX A6000, compute capability 8.6, VMM: yes
----- common params -----

-h,    --help, --usage                  print usage and exit
--version                               show version and build info
--completion-bash                       print source-able bash completion script for llama.cpp
--verbose-prompt                        print a verbose prompt before generation (default: false)
-t,    --threads N                      number of threads to use during generation (default: -1)
                                        (env: LLAMA_ARG_THREADS)
-tb,   --threads-batch N                number of threads to use during batch and prompt processing (default:
                                        same as --threads)
-C,    --cpu-mask M                     CPU affinity mask: arbitrarily long hex. Complements cpu-range
                                        (default: "")
-Cr,   --cpu-range lo-hi                range of CPUs for affinity. Complements --cpu-mask
--cpu-strict <0|1>                      use strict CPU placement (default: 0)
--prio N                                set process/thread priority : low(-1), normal(0), medium(1), high(2),
                                        realtime(3) (default: 0)
--poll <0...100>                        use polling level to wait for work (0 - no polling, default: 50)
-Cb,   --cpu-mask-batch M               CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch
                                        (default: same as --cpu-mask)
-Crb,  --cpu-range-batch lo-hi          ranges of CPUs for affinity. Complements --cpu-mask-batch
--cpu-strict-batch <0|1>                use strict CPU placement (default: same as --cpu-strict)
--prio-batch N                          set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime
                                        (default: 0)
--poll-batch <0|1>                      use polling to wait for work (default: same as --poll)
-c,    --ctx-size N                     size of the prompt context (default: 4096, 0 = loaded from model)
                                        (env: LLAMA_ARG_CTX_SIZE)
-n,    --predict, --n-predict N         number of tokens to predict (default: -1, -1 = infinity)
                                        (env: LLAMA_ARG_N_PREDICT)
-b,    --batch-size N                   logical maximum batch size (default: 2048)
                                        (env: LLAMA_ARG_BATCH)
-ub,   --ubatch-size N                  physical maximum batch size (default: 512)
                                        (env: LLAMA_ARG_UBATCH)
--keep N                                number of tokens to keep from the initial prompt (default: 0, -1 =
                                        all)
--swa-full                              use full-size SWA cache (default: false)
                                        [(more
                                        info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
                                        (env: LLAMA_ARG_SWA_FULL)
-fa,   --flash-attn                     enable Flash Attention (default: disabled)
                                        (env: LLAMA_ARG_FLASH_ATTN)
--no-perf                               disable internal libllama performance timings (default: false)
                                        (env: LLAMA_ARG_NO_PERF)
-e,    --escape                         process escapes sequences (\n, \r, \t, \', \", \\) (default: true)
--no-escape                             do not process escape sequences
--rope-scaling {none,linear,yarn}       RoPE frequency scaling method, defaults to linear unless specified by
                                        the model
                                        (env: LLAMA_ARG_ROPE_SCALING_TYPE)
--rope-scale N                          RoPE context scaling factor, expands context by a factor of N
                                        (env: LLAMA_ARG_ROPE_SCALE)
--rope-freq-base N                      RoPE base frequency, used by NTK-aware scaling (default: loaded from
                                        model)
                                        (env: LLAMA_ARG_ROPE_FREQ_BASE)
--rope-freq-scale N                     RoPE frequency scaling factor, expands context by a factor of 1/N
                                        (env: LLAMA_ARG_ROPE_FREQ_SCALE)
--yarn-orig-ctx N                       YaRN: original context size of model (default: 0 = model training
                                        context size)
                                        (env: LLAMA_ARG_YARN_ORIG_CTX)
--yarn-ext-factor N                     YaRN: extrapolation mix factor (default: -1.0, 0.0 = full
                                        interpolation)
                                        (env: LLAMA_ARG_YARN_EXT_FACTOR)
--yarn-attn-factor N                    YaRN: scale sqrt(t) or attention magnitude (default: 1.0)
                                        (env: LLAMA_ARG_YARN_ATTN_FACTOR)
--yarn-beta-slow N                      YaRN: high correction dim or alpha (default: 1.0)
                                        (env: LLAMA_ARG_YARN_BETA_SLOW)
--yarn-beta-fast N                      YaRN: low correction dim or beta (default: 32.0)
                                        (env: LLAMA_ARG_YARN_BETA_FAST)
-nkvo, --no-kv-offload                  disable KV offload
                                        (env: LLAMA_ARG_NO_KV_OFFLOAD)
-ctk,  --cache-type-k TYPE              KV cache data type for K
                                        allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1
                                        (default: f16)
                                        (env: LLAMA_ARG_CACHE_TYPE_K)
-ctv,  --cache-type-v TYPE              KV cache data type for V
                                        allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1
                                        (default: f16)
                                        (env: LLAMA_ARG_CACHE_TYPE_V)
-dt,   --defrag-thold N                 KV cache defragmentation threshold (default: 0.1, < 0 - disabled)
                                        (env: LLAMA_ARG_DEFRAG_THOLD)
-np,   --parallel N                     number of parallel sequences to decode (default: 1)
                                        (env: LLAMA_ARG_N_PARALLEL)
--mlock                                 force system to keep model in RAM rather than swapping or compressing
                                        (env: LLAMA_ARG_MLOCK)
--no-mmap                               do not memory-map model (slower load but may reduce pageouts if not
                                        using mlock)
                                        (env: LLAMA_ARG_NO_MMAP)
--numa TYPE                             attempt optimizations that help on some NUMA systems
                                        - distribute: spread execution evenly over all nodes
                                        - isolate: only spawn threads on CPUs on the node that execution
                                        started on
                                        - numactl: use the CPU map provided by numactl
                                        if run without this previously, it is recommended to drop the system
                                        page cache before using this
                                        see https://github.com/ggml-org/llama.cpp/issues/1437
                                        (env: LLAMA_ARG_NUMA)
-dev,  --device <dev1,dev2,..>          comma-separated list of devices to use for offloading (none = don't
                                        offload)
                                        use --list-devices to see a list of available devices
                                        (env: LLAMA_ARG_DEVICE)
--list-devices                          print list of available devices and exit
--override-tensor, -ot <tensor name pattern>=<buffer type>,...
                                        override tensor buffer type
-ngl,  --gpu-layers, --n-gpu-layers N   number of layers to store in VRAM
                                        (env: LLAMA_ARG_N_GPU_LAYERS)
-sm,   --split-mode {none,layer,row}    how to split the model across multiple GPUs, one of:
                                        - none: use one GPU only
                                        - layer (default): split layers and KV across GPUs
                                        - row: split rows across GPUs
                                        (env: LLAMA_ARG_SPLIT_MODE)
-ts,   --tensor-split N0,N1,N2,...      fraction of the model to offload to each GPU, comma-separated list of
                                        proportions, e.g. 3,1
                                        (env: LLAMA_ARG_TENSOR_SPLIT)
-mg,   --main-gpu INDEX                 the GPU to use for the model (with split-mode = none), or for
                                        intermediate results and KV (with split-mode = row) (default: 0)
                                        (env: LLAMA_ARG_MAIN_GPU)
--check-tensors                         check model tensor data for invalid values (default: false)
--override-kv KEY=TYPE:VALUE            advanced option to override model metadata by key. may be specified
                                        multiple times.
                                        types: int, float, bool, str. example: --override-kv
                                        tokenizer.ggml.add_bos_token=bool:false
--no-op-offload                         disable offloading host tensor operations to device (default: false)
--lora FNAME                            path to LoRA adapter (can be repeated to use multiple adapters)
--lora-scaled FNAME SCALE               path to LoRA adapter with user defined scaling (can be repeated to use
                                        multiple adapters)
--control-vector FNAME                  add a control vector
                                        note: this argument can be repeated to add multiple control vectors
--control-vector-scaled FNAME SCALE     add a control vector with user defined scaling SCALE
                                        note: this argument can be repeated to add multiple scaled control
                                        vectors
--control-vector-layer-range START END
                                        layer range to apply the control vector(s) to, start and end inclusive
-m,    --model FNAME                    model path (default: `models/$filename` with filename from `--hf-file`
                                        or `--model-url` if set, otherwise models/7B/ggml-model-f16.gguf)
                                        (env: LLAMA_ARG_MODEL)
-mu,   --model-url MODEL_URL            model download url (default: unused)
                                        (env: LLAMA_ARG_MODEL_URL)
-hf,   -hfr, --hf-repo <user>/<model>[:quant]
                                        Hugging Face model repository; quant is optional, case-insensitive,
                                        default to Q4_K_M, or falls back to the first file in the repo if
                                        Q4_K_M doesn't exist.
                                        mmproj is also downloaded automatically if available. to disable, add
                                        --no-mmproj
                                        example: unsloth/phi-4-GGUF:q4_k_m
                                        (default: unused)
                                        (env: LLAMA_ARG_HF_REPO)
-hfd,  -hfrd, --hf-repo-draft <user>/<model>[:quant]
                                        Same as --hf-repo, but for the draft model (default: unused)
                                        (env: LLAMA_ARG_HFD_REPO)
-hff,  --hf-file FILE                   Hugging Face model file. If specified, it will override the quant in
                                        --hf-repo (default: unused)
                                        (env: LLAMA_ARG_HF_FILE)
-hfv,  -hfrv, --hf-repo-v <user>/<model>[:quant]
                                        Hugging Face model repository for the vocoder model (default: unused)
                                        (env: LLAMA_ARG_HF_REPO_V)
-hffv, --hf-file-v FILE                 Hugging Face model file for the vocoder model (default: unused)
                                        (env: LLAMA_ARG_HF_FILE_V)
-hft,  --hf-token TOKEN                 Hugging Face access token (default: value from HF_TOKEN environment
                                        variable)
                                        (env: HF_TOKEN)
--log-disable                           Log disable
--log-file FNAME                        Log to file
--log-colors                            Enable colored logging
                                        (env: LLAMA_LOG_COLORS)
-v,    --verbose, --log-verbose         Set verbosity level to infinity (i.e. log all messages, useful for
                                        debugging)
--offline                               Offline mode: forces use of cache, prevents network access
                                        (env: LLAMA_OFFLINE)
-lv,   --verbosity, --log-verbosity N   Set the verbosity threshold. Messages with a higher verbosity will be
                                        ignored.
                                        (env: LLAMA_LOG_VERBOSITY)
--log-prefix                            Enable prefix in log messages
                                        (env: LLAMA_LOG_PREFIX)
--log-timestamps                        Enable timestamps in log messages
                                        (env: LLAMA_LOG_TIMESTAMPS)
-ctkd, --cache-type-k-draft TYPE        KV cache data type for K for the draft model
                                        allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1
                                        (default: f16)
                                        (env: LLAMA_ARG_CACHE_TYPE_K_DRAFT)
-ctvd, --cache-type-v-draft TYPE        KV cache data type for V for the draft model
                                        allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1
                                        (default: f16)
                                        (env: LLAMA_ARG_CACHE_TYPE_V_DRAFT)


----- sampling params -----

--samplers SAMPLERS                     samplers that will be used for generation in the order, separated by
                                        ';'
                                        (default:
                                        penalties;dry;top_n_sigma;top_k;typ_p;top_p;min_p;xtc;temperature)
-s,    --seed SEED                      RNG seed (default: -1, use random seed for -1)
--sampling-seq, --sampler-seq SEQUENCE
                                        simplified sequence for samplers that will be used (default:
                                        edskypmxt)
--ignore-eos                            ignore end of stream token and continue generating (implies
                                        --logit-bias EOS-inf)
--temp N                                temperature (default: 0.8)
--top-k N                               top-k sampling (default: 40, 0 = disabled)
--top-p N                               top-p sampling (default: 0.9, 1.0 = disabled)
--min-p N                               min-p sampling (default: 0.1, 0.0 = disabled)
--xtc-probability N                     xtc probability (default: 0.0, 0.0 = disabled)
--xtc-threshold N                       xtc threshold (default: 0.1, 1.0 = disabled)
--typical N                             locally typical sampling, parameter p (default: 1.0, 1.0 = disabled)
--repeat-last-n N                       last n tokens to consider for penalize (default: 64, 0 = disabled, -1
                                        = ctx_size)
--repeat-penalty N                      penalize repeat sequence of tokens (default: 1.0, 1.0 = disabled)
--presence-penalty N                    repeat alpha presence penalty (default: 0.0, 0.0 = disabled)
--frequency-penalty N                   repeat alpha frequency penalty (default: 0.0, 0.0 = disabled)
--dry-multiplier N                      set DRY sampling multiplier (default: 0.0, 0.0 = disabled)
--dry-base N                            set DRY sampling base value (default: 1.75)
--dry-allowed-length N                  set allowed length for DRY sampling (default: 2)
--dry-penalty-last-n N                  set DRY penalty for the last n tokens (default: -1, 0 = disable, -1 =
                                        context size)
--dry-sequence-breaker STRING           add sequence breaker for DRY sampling, clearing out default breakers
                                        ('\n', ':', '"', '*') in the process; use "none" to not use any
                                        sequence breakers
--dynatemp-range N                      dynamic temperature range (default: 0.0, 0.0 = disabled)
--dynatemp-exp N                        dynamic temperature exponent (default: 1.0)
--mirostat N                            use Mirostat sampling.
                                        Top K, Nucleus and Locally Typical samplers are ignored if used.
                                        (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)
--mirostat-lr N                         Mirostat learning rate, parameter eta (default: 0.1)
--mirostat-ent N                        Mirostat target entropy, parameter tau (default: 5.0)
-l,    --logit-bias TOKEN_ID(+/-)BIAS   modifies the likelihood of token appearing in the completion,
                                        i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',
                                        or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'
--grammar GRAMMAR                       BNF-like grammar to constrain generations (see samples in grammars/
                                        dir) (default: '')
--grammar-file FNAME                    file to read grammar from
-j,    --json-schema SCHEMA             JSON schema to constrain generations (https://json-schema.org/), e.g.
                                        `{}` for any JSON object
                                        For schemas w/ external $refs, use --grammar +
                                        example/json_schema_to_grammar.py instead
-jf,   --json-schema-file FILE          File containing a JSON schema to constrain generations
                                        (https://json-schema.org/), e.g. `{}` for any JSON object
                                        For schemas w/ external $refs, use --grammar +
                                        example/json_schema_to_grammar.py instead


----- example-specific params -----

--no-context-shift                      disables context shift on infinite text generation (default: disabled)
                                        (env: LLAMA_ARG_NO_CONTEXT_SHIFT)
-sp,   --special                        special tokens output enabled (default: false)
--no-warmup                             skip warming up the model with an empty run
--spm-infill                            use Suffix/Prefix/Middle pattern for infill (instead of
                                        Prefix/Suffix/Middle) as some models prefer this. (default: disabled)
--pooling {none,mean,cls,last,rank}     pooling type for embeddings, use model default if unspecified
                                        (env: LLAMA_ARG_POOLING)
-cb,   --cont-batching                  enable continuous batching (a.k.a dynamic batching) (default: enabled)
                                        (env: LLAMA_ARG_CONT_BATCHING)
-nocb, --no-cont-batching               disable continuous batching
                                        (env: LLAMA_ARG_NO_CONT_BATCHING)
--mmproj FILE                           path to a multimodal projector file. see tools/mtmd/README.md
                                        note: if -hf is used, this argument can be omitted
                                        (env: LLAMA_ARG_MMPROJ)
--mmproj-url URL                        URL to a multimodal projector file. see tools/mtmd/README.md
                                        (env: LLAMA_ARG_MMPROJ_URL)
--no-mmproj                             explicitly disable multimodal projector, useful when using -hf
                                        (env: LLAMA_ARG_NO_MMPROJ)
--no-mmproj-offload                     do not offload multimodal projector to GPU
                                        (env: LLAMA_ARG_NO_MMPROJ_OFFLOAD)
-a,    --alias STRING                   set alias for model name (to be used by REST API)
                                        (env: LLAMA_ARG_ALIAS)
--host HOST                             ip address to listen, or bind to an UNIX socket if the address ends
                                        with .sock (default: 127.0.0.1)
                                        (env: LLAMA_ARG_HOST)
--port PORT                             port to listen (default: 8080)
                                        (env: LLAMA_ARG_PORT)
--path PATH                             path to serve static files from (default: )
                                        (env: LLAMA_ARG_STATIC_PATH)
--api-prefix PREFIX                     prefix path the server serves from, without the trailing slash
                                        (default: )
                                        (env: LLAMA_ARG_API_PREFIX)
--no-webui                              Disable the Web UI (default: enabled)
                                        (env: LLAMA_ARG_NO_WEBUI)
--embedding, --embeddings               restrict to only support embedding use case; use only with dedicated
                                        embedding models (default: disabled)
                                        (env: LLAMA_ARG_EMBEDDINGS)
--reranking, --rerank                   enable reranking endpoint on server (default: disabled)
                                        (env: LLAMA_ARG_RERANKING)
--api-key KEY                           API key to use for authentication (default: none)
                                        (env: LLAMA_API_KEY)
--api-key-file FNAME                    path to file containing API keys (default: none)
--ssl-key-file FNAME                    path to file a PEM-encoded SSL private key
                                        (env: LLAMA_ARG_SSL_KEY_FILE)
--ssl-cert-file FNAME                   path to file a PEM-encoded SSL certificate
                                        (env: LLAMA_ARG_SSL_CERT_FILE)
--chat-template-kwargs STRING           sets additional params for the json template parser
                                        (env: LLAMA_CHAT_TEMPLATE_KWARGS)
-to,   --timeout N                      server read/write timeout in seconds (default: 600)
                                        (env: LLAMA_ARG_TIMEOUT)
--threads-http N                        number of threads used to process HTTP requests (default: -1)
                                        (env: LLAMA_ARG_THREADS_HTTP)
--cache-reuse N                         min chunk size to attempt reusing from the cache via KV shifting
                                        (default: 0)
                                        [(card)](https://ggml.ai/f0.png)
                                        (env: LLAMA_ARG_CACHE_REUSE)
--metrics                               enable prometheus compatible metrics endpoint (default: disabled)
                                        (env: LLAMA_ARG_ENDPOINT_METRICS)
--slots                                 enable slots monitoring endpoint (default: disabled)
                                        (env: LLAMA_ARG_ENDPOINT_SLOTS)
--props                                 enable changing global properties via POST /props (default: disabled)
                                        (env: LLAMA_ARG_ENDPOINT_PROPS)
--no-slots                              disables slots monitoring endpoint
                                        (env: LLAMA_ARG_NO_ENDPOINT_SLOTS)
--slot-save-path PATH                   path to save slot kv cache (default: disabled)
--jinja                                 use jinja template for chat (default: disabled)
                                        (env: LLAMA_ARG_JINJA)
--reasoning-format FORMAT               controls whether thought tags are allowed and/or extracted from the
                                        response, and in which format they're returned; one of:
                                        - none: leaves thoughts unparsed in `message.content`
                                        - deepseek: puts thoughts in `message.reasoning_content` (except in
                                        streaming mode, which behaves as `none`)
                                        (default: deepseek)
                                        (env: LLAMA_ARG_THINK)
--reasoning-budget N                    controls the amount of thinking allowed; currently only one of: -1 for
                                        unrestricted thinking budget, or 0 to disable thinking (default: -1)
                                        (env: LLAMA_ARG_THINK_BUDGET)
--chat-template JINJA_TEMPLATE          set custom jinja chat template (default: template taken from model's
                                        metadata)
                                        if suffix/prefix are specified, template will be disabled
                                        only commonly used templates are accepted (unless --jinja is set
                                        before this flag):
                                        list of built-in templates:
                                        bailing, chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2,
                                        deepseek3, exaone3, falcon3, gemma, gigachat, glmedge, granite,
                                        hunyuan-moe, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip,
                                        llama3, llama4, megrez, minicpm, mistral-v1, mistral-v3,
                                        mistral-v3-tekken, mistral-v7, mistral-v7-tekken, monarch, openchat,
                                        orion, phi3, phi4, rwkv-world, smolvlm, vicuna, vicuna-orca, yandex,
                                        zephyr
                                        (env: LLAMA_ARG_CHAT_TEMPLATE)
--chat-template-file JINJA_TEMPLATE_FILE
                                        set custom jinja chat template file (default: template taken from
                                        model's metadata)
                                        if suffix/prefix are specified, template will be disabled
                                        only commonly used templates are accepted (unless --jinja is set
                                        before this flag):
                                        list of built-in templates:
                                        bailing, chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2,
                                        deepseek3, exaone3, falcon3, gemma, gigachat, glmedge, granite,
                                        hunyuan-moe, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip,
                                        llama3, llama4, megrez, minicpm, mistral-v1, mistral-v3,
                                        mistral-v3-tekken, mistral-v7, mistral-v7-tekken, monarch, openchat,
                                        orion, phi3, phi4, rwkv-world, smolvlm, vicuna, vicuna-orca, yandex,
                                        zephyr
                                        (env: LLAMA_ARG_CHAT_TEMPLATE_FILE)
--no-prefill-assistant                  whether to prefill the assistant's response if the last message is an
                                        assistant message (default: prefill enabled)
                                        when this flag is set, if the last message is an assistant message
                                        then it will be treated as a full message and not prefilled
                                        
                                        (env: LLAMA_ARG_NO_PREFILL_ASSISTANT)
-sps,  --slot-prompt-similarity SIMILARITY
                                        how much the prompt of a request must match the prompt of a slot in
                                        order to use that slot (default: 0.50, 0.0 = disabled)
--lora-init-without-apply               load LoRA adapters without applying them (apply later via POST
                                        /lora-adapters) (default: disabled)
--draft-max, --draft, --draft-n N       number of tokens to draft for speculative decoding (default: 16)
                                        (env: LLAMA_ARG_DRAFT_MAX)
--draft-min, --draft-n-min N            minimum number of draft tokens to use for speculative decoding
                                        (default: 0)
                                        (env: LLAMA_ARG_DRAFT_MIN)
--draft-p-min P                         minimum speculative decoding probability (greedy) (default: 0.8)
                                        (env: LLAMA_ARG_DRAFT_P_MIN)
-cd,   --ctx-size-draft N               size of the prompt context for the draft model (default: 0, 0 = loaded
                                        from model)
                                        (env: LLAMA_ARG_CTX_SIZE_DRAFT)
-devd, --device-draft <dev1,dev2,..>    comma-separated list of devices to use for offloading the draft model
                                        (none = don't offload)
                                        use --list-devices to see a list of available devices
-ngld, --gpu-layers-draft, --n-gpu-layers-draft N
                                        number of layers to store in VRAM for the draft model
                                        (env: LLAMA_ARG_N_GPU_LAYERS_DRAFT)
-md,   --model-draft FNAME              draft model for speculative decoding (default: unused)
                                        (env: LLAMA_ARG_MODEL_DRAFT)
-mv,   --model-vocoder FNAME            vocoder model for audio generation (default: unused)
--tts-use-guide-tokens                  Use guide tokens to improve TTS word recall
--embd-bge-small-en-default             use default bge-small-en-v1.5 model (note: can download weights from
                                        the internet)
--embd-e5-small-en-default              use default e5-small-v2 model (note: can download weights from the
                                        internet)
--embd-gte-small-default                use default gte-small model (note: can download weights from the
                                        internet)
--fim-qwen-1.5b-default                 use default Qwen 2.5 Coder 1.5B (note: can download weights from the
                                        internet)
--fim-qwen-3b-default                   use default Qwen 2.5 Coder 3B (note: can download weights from the
                                        internet)
--fim-qwen-7b-default                   use default Qwen 2.5 Coder 7B (note: can download weights from the
                                        internet)
--fim-qwen-7b-spec                      use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can
                                        download weights from the internet)
--fim-qwen-14b-spec                     use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note:
                                        can download weights from the internet)

And specifically, for this flag,


--reasoning-budget N                    controls the amount of thinking allowed; currently only one of: -1 for
                                        unrestricted thinking budget, or 0 to disable thinking (default: -1)
                                        (env: LLAMA_ARG_THINK_BUDGET)

Motivation

Mostly to test some usescases with DeepSeek R1/Chimera and Qwen 235B, without the need to modify the system prompt.

Possible Implementation

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancementNew feature or requesthelp wantedExtra attention is needed

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions