diff --git a/src/llama.cpp b/src/llama.cpp index 614483192..4fd2d4145 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -15769,44 +15769,64 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n } } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || - ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS) { + ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS) { // TODO: Possibly spread this tree of FTYPES into its respective tensors categories. if (name.find("attn_v.weight") != std::string::npos) { - if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_IQ4_K; - else if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_IQ3_K; + if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_IQ4_K; + else if (qs.model.hparams.n_gqa() >= 2) new_type = GGML_TYPE_IQ3_K; else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; ++qs.i_attention_wv; } - else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) { - new_type = GGML_TYPE_Q4_K; + else if (qs.model.hparams.n_expert >= 2 && name.find("attn_k.weight") != std::string::npos) { + new_type = GGML_TYPE_IQ4_KS; + } + else if (qs.model.hparams.n_expert >= 2 && name.find("attn_q.weight") != std::string::npos) { + new_type = GGML_TYPE_IQ3_XXS; } else if (name.find("attn_qkv.weight") != std::string::npos) { new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_XXS : GGML_TYPE_IQ2_K; } else if (name.find("ffn_down") != std::string::npos) { - if (qs.i_ffn_down < qs.n_ffn_down/8) { - new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + if (qs.i_ffn_down < qs.n_ffn_down/4 || qs.i_ffn_down >= 7*qs.n_ffn_down/8) { + new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_XXS : GGML_TYPE_IQ2_S; } ++qs.i_ffn_down; } else if (name.find("attn_output.weight") != std::string::npos) { - if (qs.model.hparams.n_expert == 8) { + if (qs.model.hparams.n_expert >= 4) { new_type = GGML_TYPE_Q5_K; + } + else if (qs.model.hparams.n_expert >= 2) { + new_type = GGML_TYPE_Q4_K; } else { - if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S; + if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_KS; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS) new_type = GGML_TYPE_IQ2_XS; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) new_type = GGML_TYPE_IQ2_S; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS) new_type = GGML_TYPE_IQ2_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_XXS; } } } else if (name.find("attn_v.weight") != std::string::npos) { if (qs.params->attn_v_type < GGML_TYPE_COUNT) new_type = qs.params->attn_v_type; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { - new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; + else if (qs.model.type == MODEL_70B) { + // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is + // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with + // nearly negligible increase in model size by quantizing this tensor with more bits: + if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K; + } + else if (qs.model.hparams.n_expert >= 4) { + // for the 8-expert model, bumping this to Q8_0 trades just ~128MB + // TODO: explore better strategies + new_type = GGML_TYPE_Q8_0; + } + else if (qs.model.hparams.n_expert >= 2 || new_type != GGML_TYPE_IQ6_K) { + new_type = GGML_TYPE_Q6_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { + new_type = qs.model.hparams.n_gqa() >= 2 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_K) { new_type = qs.model.hparams.n_gqa() >= 2 ? GGML_TYPE_IQ4_K : GGML_TYPE_IQ3_K; } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) { - new_type = GGML_TYPE_Q4_K; - } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : qs.model.hparams.n_gqa() >= 2 ? GGML_TYPE_IQ3_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS; @@ -15840,19 +15860,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) { if (qs.model.hparams.n_vocab >= 127999 && (qs.model.type == MODEL_8B || qs.model.type == MODEL_70B)) new_type = GGML_TYPE_Q6_K; - } - if (qs.model.type == MODEL_70B) { - // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is - // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with - // nearly negligible increase in model size by quantizing this tensor with more bits: - if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K; - } - if (qs.model.hparams.n_expert == 8) { - // for the 8-expert model, bumping this to Q8_0 trades just ~128MB - // TODO: explore better strategies - new_type = GGML_TYPE_Q8_0; } - else if (qs.model.hparams.n_gqa() >= 4) { + else if (qs.model.hparams.n_gqa() >= 4) { // TODO: Possibly reintegrate this into FTYPE conditionality if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_IQ3_XXS) new_type = GGML_TYPE_IQ3_S; else if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_IQ3_S ) new_type = GGML_TYPE_Q4_K; else if (new_type == GGML_TYPE_Q4_K || new_type == GGML_TYPE_IQ4_XS) new_type = GGML_TYPE_Q5_K; @@ -15862,23 +15871,29 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n ++qs.i_attention_wv; } else if (name.find("attn_k.weight") != std::string::npos) { if (qs.params->attn_k_type < GGML_TYPE_COUNT) new_type = qs.params->attn_k_type; - else if (qs.model.hparams.n_expert == 8) { + else if (qs.model.hparams.n_expert >= 4) { // for the 8-expert model, bumping this to Q8_0 trades just ~128MB // TODO: explore better strategies new_type = GGML_TYPE_Q8_0; } + else if (qs.model.hparams.n_expert >= 2 || new_type != GGML_TYPE_IQ6_K) { + new_type = GGML_TYPE_Q6_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { + if (qs.model.hparams.n_gqa() >= 2) new_type = GGML_TYPE_Q3_K; + } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { - new_type = GGML_TYPE_IQ3_XXS; + if (qs.model.hparams.n_gqa() <= 2) new_type = GGML_TYPE_IQ3_XXS; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { - new_type = GGML_TYPE_IQ2_S; + if (qs.model.hparams.n_gqa() <= 2) new_type = GGML_TYPE_IQ2_S; } } else if (name.find("attn_q.weight") != std::string::npos) { if (qs.params->attn_q_type < GGML_TYPE_COUNT) new_type = qs.params->attn_q_type; - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && qs.model.hparams.n_expert <= 2) { new_type = GGML_TYPE_IQ3_XXS; } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && qs.model.hparams.n_expert <= 2) { new_type = GGML_TYPE_IQ2_S; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) { @@ -15891,7 +15906,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n if (qs.params->ffn_down_type < GGML_TYPE_COUNT) new_type = qs.params->ffn_down_type; else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) { - if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K; + if (i_layer < n_layer/8 || i_layer >= 7*n_layer/8) new_type = GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) { new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; @@ -15902,7 +15917,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 || - (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) { + (qs.model.hparams.n_expert >= 2 && use_more_bits(i_layer, n_layer)))) { new_type = GGML_TYPE_IQ4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { @@ -15938,7 +15953,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n } else if (name.find("attn_output.weight") != std::string::npos) { if (qs.params->attn_output_type < GGML_TYPE_COUNT) new_type = qs.params->attn_output_type; else if (arch != LLM_ARCH_FALCON) { - if (qs.model.hparams.n_expert >= 8) { + if (qs.model.hparams.n_expert >= 2) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || @@ -15961,6 +15976,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n } else if (name.find("attn_qkv.weight") != std::string::npos) { if (qs.params->attn_qkv_type < GGML_TYPE_COUNT) new_type = qs.params->attn_qkv_type; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { + new_type = GGML_TYPE_Q3_K; + } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { new_type = GGML_TYPE_Q4_K; }