Skip to content

SmoothCrossEntropyLoss #30

@jaemjaem

Description

@jaemjaem

1. class SmoothCrossEntropyLoss(Module):
2.     def __init__(self, label_smoothing=0.0, size_average=True):
3.         super().__init__()
4.         self.label_smoothing = label_smoothing
5.         self.size_average = size_average
6. 
7.     def forward(self, input, target):
8.         if len(target.size()) == 1:
9.             target = torch.nn.functional.one_hot(target, num_classes=input.size(-1))
10.             target = target.float().cuda()
11.         if self.label_smoothing > 0.0:
12.             s_by_c = self.label_smoothing / len(input[0])
13.             smooth = torch.zeros_like(target)
14.             smooth = smooth + s_by_c
15.             target = target * (1. - s_by_c) + smooth
16. 
17.         return cross_entropy(input, target, self.size_average)

It seems that the label smoothing I know is not done.

(Based on 7 num classes) Line 15 output print:

[1.0000, 0.0143, 0.0143, 0.0143, 0.0143, 0.0143, 0.0143]

label smoothing formula is:

y_ls = y_k * (1 - a) + a / K

but 15 line is:

y_ls = y_k * (1 - a / K) + a / K

correct code and result:

15. target = target * (1. - self.label_smoothing) + smooth

[0.9143, 0.0143, 0.0143, 0.0143, 0.0143, 0.0143, 0.0143]

Maybe I'm stupidly misunderstood?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions