@@ -960,6 +960,23 @@ <h2 id="experience">News</h2>
960960 < h2 id ="publications "> Selected Publications</ h2 >
961961 (* indicates equal contribution, # corresponding author)
962962
963+ < div class ="paper "> < img class ="paper " src ="./resources/paper_icon/ICCV_2025_ATPrompt.png " title ="Advancing Textual Prompt Learning with Anchored Attributes. ">
964+ < div > < strong > Advancing Textual Prompt Learning with Anchored Attributes.</ strong >
965+ < br > Zheng Li, Yibing Song, Ming-Ming Cheng, Xiang Li#, Jian Yang# < br > in ICCV, 2025< br >
966+ < a href ="https://arxiv.org/abs/2412.09442 "> [Paper]</ a >
967+ < a href ="./resources/bibtex/ICCV_2025_ATPrompt.txt "> [BibTex]</ a >
968+ < a href ="https://github.com/zhengli97/ATPrompt "> [Code]</ a > < img src ="https://img.shields.io/github/stars/zhengli97/ATPrompt?style=social "/>
969+ < a href ="https://zhuanlan.zhihu.com/p/11787739769 "> [中文解读]</ a >
970+ < a href ="https://github.com/zhengli97/ATPrompt/blob/main/docs/ATPrompt_chinese_version.pdf "> [中文版]</ a >
971+ < br >
972+ < alert >
973+ ATPrompt introduces a new attribute-anchored prompt format that can be seamlessly integrated into existing textual prompt leraning methods and achieve general improvements.
974+ </ alert >
975+ </ div >
976+ < div class ="spanner "> </ div >
977+ </ div >
978+
979+
963980 < div class ="paper "> < img class ="paper " src ="./resources/paper_icon/TPAMI_2025_FGVTP.png " title ="Fine-Grained Visual Text Prompting ">
964981 < div > < strong > Fine-Grained Visual Text Prompting</ strong >
965982 < br > Lingfeng Yang, Xiang Li#, Yueze Wang, Xinlong Wang, Jian Yang#< br > in TPAMI, 2025< br >
@@ -993,22 +1010,6 @@ <h2 id="publications">Selected Publications</h2>
9931010 </ div >
9941011
9951012
996- < div class ="paper "> < img class ="paper " src ="./resources/paper_icon/NeurIPS_2023_FGVP.png " title ="Fine-Grained Visual Prompting ">
997- < div > < strong > Fine-Grained Visual Prompting</ strong >
998- < br > Lingfeng Yang, Yueze Wang, Xiang Li#, Xinlong Wang, Jian Yang#< br > in NeurIPS, 2023< br >
999- < a href ="https://proceedings.neurips.cc/paper_files/paper/2023/file/4e9fa6e716940a7cfc60c46e6f702f52-Paper-Conference.pdf "> [Paper]</ a >
1000- < a href ="./resources/bibtex/NeurIPS-2023-fine-grained-visual-prompting-Bibtex.bib "> [BibTex]</ a >
1001- < a href ="https://github.com/ylingfeng/FGVP "> [Code]</ a > < img src ="https://img.shields.io/github/stars/ylingfeng/FGVP?style=social "/>
1002- < a href ="https://mp.weixin.qq.com/s?search_click_id=10536340093298438394-1705732863737-1260009527&__biz=MzUxMDE4MzAzOA==&mid=2247714099&idx=1&sn=efe4d92ccece149d624d44a19f75404f&chksm=f8982f6663c6f4103967040294490fb7419803ceb6b54f2e79de728104a1858ad03f011d3fb8&scene=7&subscene=90&sessionid=1705732839&clicktime=1705732863&enterid=1705732863&ascene=65&fasttmpl_type=0&fasttmpl_fullversion=7038836-zh_CN-zip&fasttmpl_flag=0&realreporttime=1705732863790&devicetype=android-33&version=28002d3b&nettype=WIFI&abtest_cookie=AAACAA%3D%3D&lang=zh_CN&countrycode=CN&exportkey=n_ChQIAhIQTY3OsEwNdtlJy0RxUEMZyxLcAQIE97dBBAEAAAAAAJ%2F5F8UMLd0AAAAOpnltbLcz9gKNyK89dVj0fDJfc0iQOozTOSv7wroTFtyx6pfMLQW9ACiiUD2XPYTJToJQxVNxvrF5tAIC8R0SbOS35hwJULATy64LUtXxEgmsCoz6Cqv01v%2B25HzaDWybt6vi82M5Lad5HaUdHZAgh4kTKQl9Lri9nQxeptfavWT7F389xOk%2BXh7B4nHuFz%2BeaRdMmZf6lLv3kLpf10%2BJykklCd3SfLyGkE68DPfh1hmFhext2v%2BZTOids%2B0QavnzY7GPOQE%3D&pass_ticket=h3SZ5GzwbdiBvmS547xoTsCldqEAFLvligHaiMY%2BXuAaSiUHNNO2iFTVImHJqOpfAucoZ0LcWe34Hs99pbaVbA%3D%3D&wx_header=3&poc_token=HEYkVWijKQwOws52LqNI8BFkPicAMjsAOeCl7vHt "> [中文解读]</ a >
1003- < a href ="https://www.bilibili.com/video/BV1qw411873s/?spm_id_from=333.999.0.0&vd_source=55bfc02adba971ea9a2c7d47e95180cc "> [中文视频]</ a >
1004- < br >
1005- < alert >
1006- FGVP is a visual prompting technique that improves referring expression comprehension by highlighting regions of interest via fine-grained segmentation, achieving better accuracy with faster inference than state-of-the-art methods.
1007- </ alert >
1008- </ div >
1009- < div class ="spanner "> </ div >
1010- </ div >
1011-
10121013 < div class ="paper "> < img class ="paper " src ="./resources/paper_icon/NeurIPS_2024_SARDet.png "
10131014 title ="Sardet-100k: Towards open-source benchmark and toolkit for large-scale sar object detection ">
10141015 < div > < strong > Sardet-100k: Towards open-source benchmark and toolkit for large-scale sar object detection</ strong > < br >
@@ -1045,6 +1046,40 @@ <h2 id="publications">Selected Publications</h2>
10451046 < div class ="spanner "> </ div >
10461047 </ div >
10471048
1049+
1050+ < div class ="paper "> < img class ="paper " src ="./resources/paper_icon/CVPR_2024_PromptKD.png " title ="PromptKD: Unsupervised Prompt Distillation for Vision-Language Models. ">
1051+ < div > < strong > PromptKD: Unsupervised Prompt Distillation for Vision-Language Models.</ strong >
1052+ < br > Zheng Li, Xiang Li#, Xinyi Fu, Xin Zhang, Weiqiang Wang, Shuo Chen, Jian Yang#.< br > in CVPR, 2024< br >
1053+ < a href ="https://arxiv.org/abs/2403.02781 "> [Paper]</ a >
1054+ < a href ="./resources/bibtex/CVPR_2024.PromptKD.txt "> [BibTex]</ a >
1055+ < a href ="https://github.com/zhengli97/PromptKD "> [Code]</ a > < img src ="https://img.shields.io/github/stars/zhengli97/PromptKD?style=social "/>
1056+ < a href ="https://zhuanlan.zhihu.com/p/684269963 "> [中文解读]</ a >
1057+ < a href ="https://github.com/zhengli97/PromptKD/blob/main/docs/PromptKD_chinese_version.pdf "> [中文版]</ a >
1058+ < a href ="https://www.techbeat.net/talk-info?id=915 "> [中文视频]</ a >
1059+ < br >
1060+ < alert >
1061+ PromptKD is a simple and effective prompt-driven unsupervised distillation framework for VLMs (e.g., CLIP), with state-of-the-art performance.
1062+ </ alert >
1063+ </ div >
1064+ < div class ="spanner "> </ div >
1065+ </ div >
1066+
1067+ < div class ="paper "> < img class ="paper " src ="./resources/paper_icon/NeurIPS_2023_FGVP.png " title ="Fine-Grained Visual Prompting ">
1068+ < div > < strong > Fine-Grained Visual Prompting</ strong >
1069+ < br > Lingfeng Yang, Yueze Wang, Xiang Li#, Xinlong Wang, Jian Yang#< br > in NeurIPS, 2023< br >
1070+ < a href ="https://proceedings.neurips.cc/paper_files/paper/2023/file/4e9fa6e716940a7cfc60c46e6f702f52-Paper-Conference.pdf "> [Paper]</ a >
1071+ < a href ="./resources/bibtex/NeurIPS-2023-fine-grained-visual-prompting-Bibtex.bib "> [BibTex]</ a >
1072+ < a href ="https://github.com/ylingfeng/FGVP "> [Code]</ a > < img src ="https://img.shields.io/github/stars/ylingfeng/FGVP?style=social "/>
1073+ < a href ="https://mp.weixin.qq.com/s?search_click_id=10536340093298438394-1705732863737-1260009527&__biz=MzUxMDE4MzAzOA==&mid=2247714099&idx=1&sn=efe4d92ccece149d624d44a19f75404f&chksm=f8982f6663c6f4103967040294490fb7419803ceb6b54f2e79de728104a1858ad03f011d3fb8&scene=7&subscene=90&sessionid=1705732839&clicktime=1705732863&enterid=1705732863&ascene=65&fasttmpl_type=0&fasttmpl_fullversion=7038836-zh_CN-zip&fasttmpl_flag=0&realreporttime=1705732863790&devicetype=android-33&version=28002d3b&nettype=WIFI&abtest_cookie=AAACAA%3D%3D&lang=zh_CN&countrycode=CN&exportkey=n_ChQIAhIQTY3OsEwNdtlJy0RxUEMZyxLcAQIE97dBBAEAAAAAAJ%2F5F8UMLd0AAAAOpnltbLcz9gKNyK89dVj0fDJfc0iQOozTOSv7wroTFtyx6pfMLQW9ACiiUD2XPYTJToJQxVNxvrF5tAIC8R0SbOS35hwJULATy64LUtXxEgmsCoz6Cqv01v%2B25HzaDWybt6vi82M5Lad5HaUdHZAgh4kTKQl9Lri9nQxeptfavWT7F389xOk%2BXh7B4nHuFz%2BeaRdMmZf6lLv3kLpf10%2BJykklCd3SfLyGkE68DPfh1hmFhext2v%2BZTOids%2B0QavnzY7GPOQE%3D&pass_ticket=h3SZ5GzwbdiBvmS547xoTsCldqEAFLvligHaiMY%2BXuAaSiUHNNO2iFTVImHJqOpfAucoZ0LcWe34Hs99pbaVbA%3D%3D&wx_header=3&poc_token=HEYkVWijKQwOws52LqNI8BFkPicAMjsAOeCl7vHt "> [中文解读]</ a >
1074+ < a href ="https://www.bilibili.com/video/BV1qw411873s/?spm_id_from=333.999.0.0&vd_source=55bfc02adba971ea9a2c7d47e95180cc "> [中文视频]</ a >
1075+ < br >
1076+ < alert >
1077+ FGVP is a visual prompting technique that improves referring expression comprehension by highlighting regions of interest via fine-grained segmentation, achieving better accuracy with faster inference than state-of-the-art methods.
1078+ </ alert >
1079+ </ div >
1080+ < div class ="spanner "> </ div >
1081+ </ div >
1082+
10481083 < div class ="paper "> < img class ="paper " src ="./resources/paper_icon/ICCV_2023_LSKNet.png "
10491084 title ="Large Selective Kernel Network for Remote Sensing Object Detection ">
10501085 < div > < strong > Large Selective Kernel Network for Remote Sensing Object Detection</ strong > < br >
@@ -1069,8 +1104,7 @@ <h2 id="publications">Selected Publications</h2>
10691104 in AAAI, 2023< br >
10701105 < a href ="https://arxiv.org/pdf/2211.16231.pdf "> [Paper]</ a >
10711106 < a href ="./resources/bibtex/AAAI_2023_CTKD.txt "> [BibTex]</ a >
1072- < a href ="https://github.com/zhengli97/CTKD "> [Code]</ a > < img
1073- src ="https://img.shields.io/github/stars/zhengli97/CTKD?style=social "/>
1107+ < a href ="https://github.com/zhengli97/CTKD "> [Code]</ a > < img src ="https://img.shields.io/github/stars/zhengli97/CTKD?style=social "/>
10741108 < br >
10751109 < alert >
10761110 CTKD organizes the distillation task from easy to hard through a dynamic and learnable temperature. The temperature is learned during the student’s training process with a reversed gradient that aims to maximize the distillation loss in an adversarial manner.
0 commit comments