|
| 1 | +from dataclasses import MISSING, dataclass, field |
| 2 | + |
| 3 | +from areal.api.cli_args import GRPOConfig as BaseGRPOConfig |
| 4 | +from areal.api.cli_args import InferenceEngineConfig, SchedulerConfig |
| 5 | +from areal.api.cli_args import TrainEngineConfig as BaseTrainEngineConfig |
| 6 | + |
| 7 | + |
| 8 | +class RemoteHybridInferenceConfig(InferenceEngineConfig): |
| 9 | + model_path: str = field( |
| 10 | + default=MISSING, |
| 11 | + metadata={"help": "model path"}, |
| 12 | + ) |
| 13 | + storage_path: str = field( |
| 14 | + default=MISSING, |
| 15 | + metadata={"help": "storage path"}, |
| 16 | + ) |
| 17 | + random_seed: int = field( |
| 18 | + default=0, |
| 19 | + metadata={"help": "random seed"}, |
| 20 | + ) |
| 21 | + engine_config: dict = field(default_factory=dict) |
| 22 | + dp_size: int = field( |
| 23 | + default=1, |
| 24 | + metadata={"help": "dp size"}, |
| 25 | + ) |
| 26 | + pp_size: int = field( |
| 27 | + default=1, |
| 28 | + metadata={"help": "pp size"}, |
| 29 | + ) |
| 30 | + tp_size: int = field( |
| 31 | + default=1, |
| 32 | + metadata={"help": "tp size"}, |
| 33 | + ) |
| 34 | + seed: int = field( |
| 35 | + default=1, |
| 36 | + metadata={"help": "seed"}, |
| 37 | + ) |
| 38 | + batch_requests: bool = field( |
| 39 | + default=False, |
| 40 | + metadata={"help": "batch requests"}, |
| 41 | + ) |
| 42 | + |
| 43 | + |
| 44 | +@dataclass |
| 45 | +class RemoteMegatronWrapPolicy: |
| 46 | + n_minibatches: int = 1 |
| 47 | + kl_ctl: float = 0.0 |
| 48 | + adv_norm: bool = False |
| 49 | + discount: float = 1.0 |
| 50 | + gae_lambda: float = 1.0 |
| 51 | + eps_clip: float = 0.2 |
| 52 | + clip_ratio_low: float = 0.2 |
| 53 | + clip_ratio_high: float = 0.28 |
| 54 | + c_clip: float | None = None |
| 55 | + value_eps_clip: float = 0.2 |
| 56 | + max_reward_clip: float = 5.0 |
| 57 | + disable_value: bool = True |
| 58 | + early_stop_kl: float | None = None |
| 59 | + early_stop_imp_ratio: float | None = None |
| 60 | + adaptive_kl_ctl: bool = False |
| 61 | + adaptive_kl_target: float | None = 6 |
| 62 | + adaptive_kl_horizon: float | None = 10000 |
| 63 | + enable_save: bool = True |
| 64 | + value_norm: bool = True |
| 65 | + value_norm_type: str = field(metadata={"choices": ["exp", "ma"]}, default="exp") |
| 66 | + value_norm_beta: float = 0.99995 |
| 67 | + value_norm_eps: float = 1e-5 |
| 68 | + group_size: int = 8 |
| 69 | + generation_size: int | None = None |
| 70 | + mask_no_eos_with_zero: bool = False |
| 71 | + group_adv_norm: bool = True |
| 72 | + mask_too_long: bool = False |
| 73 | + use_dense_reward: bool = False |
| 74 | + reward_delta: bool = True |
| 75 | + token_normalize_scope: str = field( |
| 76 | + default="global", metadata={"choices": ["global", "dp"]} |
| 77 | + ) |
| 78 | + sample_reuse: int = 1 |
| 79 | + temperature: float = 1.0 # GenerationHyperparameters |
| 80 | + reward_output_scaling: float = field( |
| 81 | + default=1.0, metadata={"help": "Reward scaling factor"} |
| 82 | + ) |
| 83 | + reward_output_bias: float = field(default=0.0, metadata={"help": "Reward bias"}) |
| 84 | + recompute_logp: bool = False |
| 85 | + |
| 86 | + |
| 87 | +@dataclass |
| 88 | +class RemoteMegatronEngineConfig: |
| 89 | + wrap_policy: RemoteMegatronWrapPolicy | None = field( |
| 90 | + default_factory=RemoteMegatronWrapPolicy, |
| 91 | + metadata={"help": "RemoteMegatron wrap policy."}, |
| 92 | + ) |
| 93 | + remote_megatron_config: dict = field(default_factory=dict) |
| 94 | + loss_configs: dict = field(default_factory=dict) |
| 95 | + recover_dir: str = field(default="") |
| 96 | + |
| 97 | + @staticmethod |
| 98 | + def assign_wrap_policy(policy_dict: dict) -> RemoteMegatronWrapPolicy: |
| 99 | + """Assign values from dictionary to RemoteMegatronWrapPolicy fields. |
| 100 | +
|
| 101 | + Args: |
| 102 | + policy_dict: Dictionary containing wrap policy configuration |
| 103 | +
|
| 104 | + Returns: |
| 105 | + Configured RemoteMegatronWrapPolicy instance |
| 106 | + """ |
| 107 | + policy = RemoteMegatronWrapPolicy() |
| 108 | + for field_name, field_value in policy_dict.items(): |
| 109 | + if hasattr(policy, field_name): |
| 110 | + setattr(policy, field_name, field_value) |
| 111 | + return policy |
| 112 | + |
| 113 | + experiment_name: str = field( |
| 114 | + default="test-exp", |
| 115 | + metadata={"help": "Name of the experiment (no '_' or '/'). Required."}, |
| 116 | + ) |
| 117 | + trial_name: str = field( |
| 118 | + default="test-trial", |
| 119 | + metadata={"help": "Name of the trial (no '-' or '/'). Required."}, |
| 120 | + ) |
| 121 | + group_size: int = field( |
| 122 | + default=8, |
| 123 | + metadata={"help": "Number of answers retained per prompt (best-of-n)."}, |
| 124 | + ) |
| 125 | + train_bs_n_seqs: int = field( |
| 126 | + default=32, metadata={"help": "Training batch size in number of sequences"} |
| 127 | + ) |
| 128 | + n_mbs: int = field( |
| 129 | + default=1, |
| 130 | + metadata={ |
| 131 | + "help": "Number of micro-batches (or minimum number if max_tokens_per_mb is set). Used when max_tokens_per_mb is None or as minimum count", |
| 132 | + }, |
| 133 | + ) |
| 134 | + max_tokens_per_mb: int = field( |
| 135 | + default=16384, |
| 136 | + metadata={ |
| 137 | + "help": "Maximum tokens per micro-batch. When set, n_mbs becomes the minimum number of micro-batches", |
| 138 | + }, |
| 139 | + ) |
| 140 | + global_step: int = field( |
| 141 | + default=0, |
| 142 | + metadata={ |
| 143 | + "help": "global step for recover", |
| 144 | + }, |
| 145 | + ) |
| 146 | + |
| 147 | + |
| 148 | +class TrainEngineConfig(BaseTrainEngineConfig): |
| 149 | + hybrid_engine: RemoteMegatronEngineConfig = field( |
| 150 | + default_factory=RemoteMegatronEngineConfig |
| 151 | + ) |
| 152 | + |
| 153 | + |
| 154 | +@dataclass |
| 155 | +class RecoverConfig: |
| 156 | + experiment_name: str = field(default="default-experiment") |
| 157 | + trial_name: str = field(default="trial0") |
| 158 | + fileroot: str = field(default="") |
| 159 | + recover_meta_info_path: str = field(default="") |
| 160 | + enable_recover: bool = field(default=False) |
| 161 | + latest_disable_save_hf: bool = field( |
| 162 | + default=True, metadata={"help": "Disable saving latest huggingFace"} |
| 163 | + ) |
| 164 | + periodic_disable_save_hf: bool = field( |
| 165 | + default=False, metadata={"help": "Disable saving periodic huggingFace"} |
| 166 | + ) |
| 167 | + periodic_save_interval: int | None = field( |
| 168 | + default=None, metadata={"help": "Periodic save steps"} |
| 169 | + ) |
| 170 | + latest_save_interval: int | None = field( |
| 171 | + default=None, metadata={"help": "Latest save steps"} |
| 172 | + ) |
| 173 | + |
| 174 | + |
| 175 | +@dataclass |
| 176 | +class BaseExperimentConfigExtension: |
| 177 | + enable_colocate_mode: bool = field( |
| 178 | + default=False, metadata={"help": "Enable colocate mode."} |
| 179 | + ) |
| 180 | + storage_prefix: str = field( |
| 181 | + default="", metadata={"help": "Storage prefix for colocate mode."} |
| 182 | + ) |
| 183 | + weight_update_type: str = field(default="nccl", metadata={"help": "nccl/disk"}) |
| 184 | + |
| 185 | + scheduler: SchedulerConfig = field( |
| 186 | + default_factory=SchedulerConfig, metadata={"help": "Scheduler config."} |
| 187 | + ) |
| 188 | + |
| 189 | + |
| 190 | +@dataclass |
| 191 | +class GRPOConfig(BaseGRPOConfig, BaseExperimentConfigExtension): |
| 192 | + rollout: RemoteHybridInferenceConfig = field( |
| 193 | + default_factory=RemoteHybridInferenceConfig |
| 194 | + ) |
| 195 | + actor: TrainEngineConfig = field(default_factory=TrainEngineConfig) |
| 196 | + ref: TrainEngineConfig = field(default_factory=TrainEngineConfig) |
| 197 | + recover: RecoverConfig = field(default_factory=RecoverConfig) |
0 commit comments